TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142077 times)
  2. FAT32 Library (75303 times)
  3. Network Ethernet Library (59501 times)
  4. USB Device Library (49525 times)
  5. Network WiFi Library (45289 times)
  6. FT800 Library (44919 times)
  7. GSM click (31441 times)
  8. mikroSDK (30454 times)
  9. microSD click (27803 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano Power 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Linear

Downloaded: 373 times

Not followed.

License: MIT license  

Nano Power 2 Click is a very low power voltage comparator, aimed at portable and battery-powered applications. It allows detecting a difference of two voltage potentials, applied on two input pins.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano Power 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano Power 2 Click" changes.

Do you want to report abuse regarding "Nano Power 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Nano Power 2 Click

Nano Power 2 Click is a very low power voltage comparator, aimed at portable and battery-powered applications. It allows detecting a difference of two voltage potentials, applied on two input pins.

nanopower2_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the NanoPower2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for NanoPower2 Click driver.

Standard key functions :

  • nanopower2_cfg_setup Config Object Initialization function.

    void nanopower2_cfg_setup ( nanopower2_cfg_t *cfg ); 
  • nanopower2_init Initialization function.

    err_t nanopower2_init ( nanopower2_t *ctx, nanopower2_cfg_t *cfg );

Example key functions :

  • nanopower2_check_output Function gets output voltage from comparator.
    uint8_t nanopower2_check_output ( nanopower2_t *ctx );

Examples Description

This example logs the comparators output value.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver.


void application_init ( void )
{
      log_cfg_t log_cfg;
    nanopower2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    nanopower2_cfg_setup( &cfg );
    NANOPOWER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    nanopower2_init( &nanopower2, &cfg );

    log_printf( &logger, "NANO POWER 2 is initialized\r\n" );
    out_check_prev = 2;
}

Application Task

Checks the comparator's output and logs output value on USBUART.


void application_task ( void )
{
    out_check = nanopower2_check_output( &nanopower2 );
    if ( out_check != out_check_prev )
    {
        log_printf( &logger, "OUT is: %d\r\n", ( uint16_t ) out_check );

        out_check_prev = out_check;
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NanoPower2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thunder Click

0

Thunder Click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder Click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

[Learn More]

I2C Isolator 2 Click

0

I2C Isolator 2 Click provides I2C lines and power isolation for slave devices. It carries the ADM3260 dual I2C isolator with an integrated DC-to-DC converter. I2C Isolator 2 Click is designed to run on either 3.3V or 5V power supply.

[Learn More]

DC Motor 12 Click

0

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]