TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139248 times)
  2. FAT32 Library (71743 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28073 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Power/Reset Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 208 times

Not followed.

License: MIT license  

Power/Reset Click is equipped with two capacitive touch pads on a single Click board™.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Power/Reset Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Power/Reset Click" changes.

Do you want to report abuse regarding "Power/Reset Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Power Reset Click

Power/Reset Click is equipped with two capacitive touch pads on a single Click board™.

powerreset_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the PowerReset Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for PowerReset Click driver.

Standard key functions :

  • Config Object Initialization function.

    void powerreset_cfg_setup ( powerreset_cfg_t *cfg );

  • Initialization function.

    POWERRESET_RETVAL powerreset_init ( powerreset_t ctx, powerreset_cfg_t cfg );

Example key functions :

  • Power Check function.

    powerreset_state_t powerreset_get_pwr( powerreset_t *ctx );

  • Reset Check function.

    powerreset_state_t powerreset_get_rst( powerreset_t *ctx );

Examples Description

Reads PWR and RST pin states and performs a control of the timer counter depending on the pressed button.

The demo application is composed of two sections :

Application Init

Initializes device and logger module, prints Initialization done message.


void application_init ( void )
{
    log_cfg_t log_cfg;
    powerreset_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    powerreset_cfg_setup( &cfg );
    POWERRESET_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    powerreset_init( &powerreset, &cfg );

    Delay_ms ( 100 );

    log_printf( &logger, "** Touch Button initialization done **\r\n");
    log_printf( &logger, "**************************************\r\n");
}

Application Task

Checks the states of the PWR and RST pins and logs every change.


void application_task ( void )
{
    new_pwr_state = powerreset_get_pwr( &powerreset );
    new_rst_state = powerreset_get_rst( &powerreset );

    if ( new_pwr_state != pwr_state )
    {
        if ( new_pwr_state == POWERRESET_ACTIVE )
        {
            log_printf( &logger, "POWER ON\r\n" );
            Delay_ms ( 100 );
        }
        else if ( new_pwr_state == POWERRESET_INACTIVE )
        {
            log_printf( &logger, "POWER OFF\r\n" );
            Delay_ms ( 100 );
        }
        pwr_state = new_pwr_state;
    }

    if ( new_rst_state != rst_state )
    {
        if ( new_rst_state == POWERRESET_ACTIVE )
        {
            log_printf( &logger, "Reset occured!\r\n" );
            Delay_ms ( 100 );
        }
        rst_state = new_rst_state;
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PowerReset

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mikromedia 3 for Kinetis Capacitive FPI

0

This project contains example for testing modules on Mikromedia 3 for Kinetis Capacitive FPI.

[Learn More]

Ambient 23 Click

0

Ambient 23 Click is a compact add-on board that measures the intensity of visible light. This board features the VEML3235SL, an advanced ambient light sensor designed by the CMOS process from Vishay Semiconductors that transforms light intensity to a 16-bit digital signal output that can be directly communicated via an I2C interface.

[Learn More]

Earthquake Click

0

Earthquake Click carries D7S, the world’s smallest high-precision seismic sensor from Omron. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over I2C interface, with additional functionality provided by the following pins on the mikroBUS™ line: PWM, INT, CS.

[Learn More]