TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141115 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PWM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: PWM

Downloaded: 441 times

Not followed.

License: MIT license  

PWM Click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PWM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PWM Click" changes.

Do you want to report abuse regarding "PWM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


PWM Click

PWM Click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

pwm_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Pwm Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pwm Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pwm_cfg_setup ( pwm_cfg_t *cfg );

  • Initialization function.

    PWM_RETVAL pwm_init ( pwm_t ctx, pwm_cfg_t cfg );

Example key functions :

  • Device configuration function.

    void pwm_dev_config ( pwm_t *ctx, uint8_t chann_id, uint8_t state );

  • Set channel raw function.

    void pwm_set_channel_raw ( pwm_t *ctx, uint8_t chann_id, uint16_t raw_off_set, uint16_t raw_dc );

  • Set all channels raw function.

    void pwm_set_all_raw ( pwm_t *ctx, uint16_t raw_dc );

Examples Description

This is an example that shows some of the functions that PWM Click has.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver, enables output, configures device, sets prescaling, configures output and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pwm_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pwm_cfg_setup( &cfg );
    PWM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pwm_init( &pwm, &cfg );
    Delay_ms ( 100 );

    pwm_set_output( &pwm, PWM_ENABLE );
    pwm_dev_config( &pwm, &config0 );
    pwm_set_pre_scale( &pwm, 0x04 );
    pwm_dev_config( &pwm, &config1 );
    pwm_output_config( &pwm,  &config2 );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " PWM  Click \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
}

Application Task

Changes the duty cycle of all channels every 10 seconds. All data are being logged on USB UART where you can track their changes.


void application_task ( void )
{
    uint8_t chann_id;

    pwm_set_all_raw( &pwm, PWM_MAX_RESOLUTION / 2 );
    log_printf( &logger, "All Channels set to 50%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, PWM_MAX_RESOLUTION / 4 );
    }
    log_printf( &logger, "Channels 0-7 set to 25%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, ( PWM_MAX_RESOLUTION / 4 ) * 3 );
    }
    log_printf( &logger, "Channels 0-7 set to 75%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    pwm_all_chann_state( &pwm, 0 );
    log_printf( &logger, "All Channels disabled \r\n " );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pwm

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Voltmeter Click

0

Voltmeter Click is a mikroBUS™ add-on board for measuring voltage in an external electric circuit.

[Learn More]

Zero-Cross Click

0

Zero-Cross Click is a compact add-on board that has the ability to detect the change from positive to negative or negative to a positive level of a sinusoidal waveform. This board features circuitry that provides Zero Crossing Detection (ZCD). Whenever the sine wave crosses the ground potential, the output shifts from HIGH logic to LOW or vice-versa.

[Learn More]

Pressure 19 Click

0

Pressure 19 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the MLX90817, a factory-calibrated absolute pressure sensor delivering ratiometric analog output from Melexis Technologies. The MLX90817 comes with a configurable host interface that supports I2C serial communication and configurable signal processing (the user is allowed to process the output signal in analog or digital form). It measures pressure from 0.2 up to 3bar with a pressure accuracy of ±33mbar. Its DSP-based architecture using a 16bit microcontroller provides outstanding performance in terms of initial accuracy and assures operation in a temperature range of -40°C to +120°C, ensuring stable operation under extreme conditions.

[Learn More]