TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136781 times)
  2. FAT32 Library (69977 times)
  3. Network Ethernet Library (55948 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41184 times)
  7. GSM click (28987 times)
  8. PID Library (26419 times)
  9. mikroSDK (26372 times)
  10. microSD click (25381 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PWM click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: PWM

Downloaded: 220 times

Not followed.

License: MIT license  

PWM click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PWM click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PWM click" changes.

Do you want to report abuse regarding "PWM click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


PWM click

PWM click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

pwm_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Pwm Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pwm Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pwm_cfg_setup ( pwm_cfg_t *cfg );

  • Initialization function.

    PWM_RETVAL pwm_init ( pwm_t ctx, pwm_cfg_t cfg );

Example key functions :

  • Device configuration function.

    void pwm_dev_config ( pwm_t *ctx, uint8_t chann_id, uint8_t state );

  • Set channel raw function.

    void pwm_set_channel_raw ( pwm_t *ctx, uint8_t chann_id, uint16_t raw_off_set, uint16_t raw_dc );

  • Set all channels raw function.

    void pwm_set_all_raw ( pwm_t *ctx, uint16_t raw_dc );

Examples Description

This is an example that shows some of the functions that PWM click has.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver, enables output, configures device, sets prescaling, configures output and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pwm_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pwm_cfg_setup( &cfg );
    PWM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pwm_init( &pwm, &cfg );
    Delay_ms ( 100 );

    pwm_set_output( &pwm, PWM_ENABLE );
    pwm_dev_config( &pwm, &config0 );
    pwm_set_pre_scale( &pwm, 0x04 );
    pwm_dev_config( &pwm, &config1 );
    pwm_output_config( &pwm,  &config2 );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " PWM  Click \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
}

Application Task

Changes the duty cycle of all channels every 10 seconds. All data are being logged on USB UART where you can track their changes.


void application_task ( void )
{
    uint8_t chann_id;

    pwm_set_all_raw( &pwm, PWM_MAX_RESOLUTION / 2 );
    log_printf( &logger, "All Channels set to 50%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, PWM_MAX_RESOLUTION / 4 );
    }
    log_printf( &logger, "Channels 0-7 set to 25%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, ( PWM_MAX_RESOLUTION / 4 ) * 3 );
    }
    log_printf( &logger, "Channels 0-7 set to 75%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    pwm_all_chann_state( &pwm, 0 );
    log_printf( &logger, "All Channels disabled \r\n " );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pwm

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RS485 7 click

0

RS485 7 Click is a compact add-on board that enables communication over an RS485 network. This board features the THVD1424, a full duplex RS485 transceiver with a selectable data rate from Texas Instruments. The THVD1424 offers several pin-controlled features, including an on-chip 120Ω termination resistor, slew rate control, and the ability to switch between half and full duplex mode. With its high immunity to IEC Contact Discharge ESD events, the bus pins require no additional system-level protection components. Additionally, the chip is known for its low power consumption and glitch-free power-up/power-down functionality, which enables hot plug-in capability.

[Learn More]

A5000 Plug n Trust click

0

A5000 Plug&Trust Click is a compact add-on board representing a ready-to-use secure IoT authenticator. This board features the A5000, an Edge Lock® Secure Authenticator from NXP Semiconductors. The A5000 provides a root of trust at the IC level, giving an IoT authentication system state-of-the-art security capability. It allows for securely storing and provisioning credentials and performing cryptographic operations for security-critical communication and authentication functions. It has an independent Common Criteria EAL 6+ security certification up to OS level and supports ECC asymmetric cryptographic and AES/3DES symmetric algorithms.

[Learn More]

LCD Demo

0

The application demonstrates LCD functionality.

[Learn More]