TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141685 times)
  2. FAT32 Library (74750 times)
  3. Network Ethernet Library (59207 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44995 times)
  6. FT800 Library (44520 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27579 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pwm Driver Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 534 times

Not followed.

License: MIT license  

This application is controls the speed DC motors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pwm Driver Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pwm Driver Click" changes.

Do you want to report abuse regarding "Pwm Driver Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pwm Driver Click

If you need to control DC motors with loads up to 10A, PWM driver Click is the perfect solution, thanks to the Silicon Lab Si8711CC one-channel isolator.

pwmdriver_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the PwmDriver Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for PwmDriver Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pwmdriver_cfg_setup ( pwmdriver_cfg_t *cfg );

  • Initialization function.

    PWMDRIVER_RETVAL pwmdriver_init ( pwmdriver_t ctx, pwmdriver_cfg_t cfg );

  • Click Default Configuration function.

    void pwmdriver_default_cfg ( pwmdriver_t *ctx );

Example key functions :

  • Generic sets PWM duty cycle

    void pwmdriver_set_duty_cycle ( pwmdriver_t *ctx, pwm_data_t duty_cycle );

  • Stop PWM module.

    void pwmdriver_pwm_stop ( pwmdriver_t *ctx );

  • Start PWM module

    void pwmdriver_pwm_start ( pwmdriver_t *ctx );

Examples Description

This application is controls the speed DC motors.

The demo application is composed of two sections :

Application Init

Initialization driver enables - GPIO, PWM initialization set PWM duty cycle and PWM frequency, start PWM, enable the engine, and start to write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pwmdriver_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pwmdriver_cfg_setup( &cfg );
    PWMDRIVER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pwmdriver_init( &pwmdriver, &cfg );

    Delay_ms ( 100 );

    log_printf( &logger, "   Initialization PWM  \r\n  " );
    pwmdriver_set_duty_cycle( &pwmdriver, 0.0 );
    pwmdriver_pwm_start( &pwmdriver );
    Delay_ms ( 1000 );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is an example that demonstrates the use of the PWM driver Click board. This example shows the automatic control of PWM, the first increases duty cycle and then the duty cycle is falling. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    pwmdriver_set_duty_cycle ( &pwmdriver, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PwmDriver

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mikromedia 3 for Kinetis Capacitive

0

This project contains example for testing modules on Mikromedia 3 for Kinetis Capacitive.

[Learn More]

Mikromedia 3 for STM32F2 Capacitive

0

This project contains example for testing modules on Mikromedia 3 for STM32F2 Capacitive.

[Learn More]

DC Motor 21 Click

0

DC Motor 21 Click is a compact add-on board that contains a brushed DC motor driver. This board features the A3910, a DC motor driver designed for low voltage power applications from Allegro Microsystems. It is controlled via several GPIO pins and has a wide operating voltage range with an output current capacity of 500mA. In addition to the possibility to be used in the full-bridge configuration to drive a single bidirectional DC motor, it can also be used as a dual half-bridge to drive dual DC motors.

[Learn More]