TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142123 times)
  2. FAT32 Library (75422 times)
  3. Network Ethernet Library (59568 times)
  4. USB Device Library (49557 times)
  5. Network WiFi Library (45363 times)
  6. FT800 Library (45004 times)
  7. GSM click (31486 times)
  8. mikroSDK (30568 times)
  9. microSD click (27903 times)
  10. PID Library (27637 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Remote Temp Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 462 times

Not followed.

License: MIT license  

Remote Temp Click is a temperature sensing Click board™, which features the EMC1833 from Microchip, a specifically designed IC, capable of measuring remote temperature. This option makes Remote Temp Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the BJT model junction can be a substrate PNP or NPN.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Remote Temp Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Remote Temp Click" changes.

Do you want to report abuse regarding "Remote Temp Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Remote Temp Click

Remote Temp Click is a temperature sensing Click board™, which features the EMC1833 from Microchip, a specifically designed IC, capable of measuring remote temperature. This option makes Remote Temp Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the BJT model junction can be a substrate PNP or NPN.

remotetemp_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the RemoteTemp Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for RemoteTemp Click driver.

Standard key functions :

  • Config Object Initialization function.

    void remotetemp_cfg_setup ( remotetemp_cfg_t *cfg );

  • Initialization function.

    REMOTETEMP_RETVAL remotetemp_init ( remotetemp_t ctx, remotetemp_cfg_t cfg );

  • Click Default Configuration function.

    void remotetemp_default_cfg ( remotetemp_t *ctx );

Example key functions :

  • Getting state of INT pin.

    uint8_t remotetemp_int_get ( remotetemp_t *ctx );

  • Getting state of AN pin.

    uint8_t remotetemp_an_get ( remotetemp_t *ctx );

  • Setting temperature range.

    uint8_t remotetemp_set_range( remotetemp_t *ctx, uint8_t range_setting );

Examples Description

This application reads remote temperature data.

The demo application is composed of two sections :

Application Init

Initializes I2C driver, sets range, configures device and sets threshold values.

void application_init ( void )
{
    log_cfg_t log_cfg;
    remotetemp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    remotetemp_cfg_setup( &cfg );
    REMOTETEMP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    remotetemp_init( &remotetemp, &cfg );
    Delay_ms ( 300 );
    remotetemp_set_range( &remotetemp, REMOTETEMP_RANGE_0_127 );
    remotetemp_default_cfg( &remotetemp );
    log_printf( &logger, "> app init done \r\n" );
}

Application Task

Executes all 'remotetemp_aux_getXxx()' functions.

void application_task ( void )
{
    remotetemp_aux_get_fault( &remotetemp );
    remotetemp_aux_get_high_limit_status( &remotetemp );
    remotetemp_aux_get_low_limit_status( &remotetemp );
    remotetemp_aux_get_therm_limit_status( &remotetemp );
    remotetemp_aux_get_hottest_status( &remotetemp );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RemoteTemp

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

2x5W Amp click

6

2x5W AMP click functions as an amplifier and features the TDA7491LP 2x5-watt dual BTL class-D audio amplifier. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over the following pins on the mikroBUSâ„¢ line: AN, RST, CS, PWM, INT.

[Learn More]

LED Driver 12 Click

0

LED Driver 12 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the PCA9532, a 16-bit I2C-configurable I/O expander optimized for dimming LEDs in 256 discrete Red/Green/Blue (RGB) steps from NXP Semiconductors. The PCA9532 offers high efficiency, supporting up to 16 LED channels and delivering a maximum of up to 25mA of LED current per channel. It contains an internal oscillator with two user-programmable blink rates and duty cycles coupled to the output PWM. Any bits not used for controlling the LEDs can be used for GPIO expansion, which provides a simple solution when additional I/O is needed for some sensors, push-buttons, or alarm monitoring. This Click board™ is suitable for color mixing and backlight application for amusement products, LED status signalization, home automation projects, and many more.

[Learn More]

Color 15 Click

0

Color 15 Click is a compact add-on board representing an accurate color sensing solution. This board features the CLS-16D24-44-DF8/TR8, a low power, high sensitivity, color light sensor from Everlight Electronics. This Click boardâ„¢, with an I2C configurable color sensor, senses red, green, blue, white (RGBW), and infrared light and converts them to digital values. The RGBW sensor is designed to reject IR in light sources allowing the device to operate in environments from sunlight to dark rooms. The integrating ADC rejects 50Hz and 60Hz flickers caused by artificial light sources.

[Learn More]