We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: SRAM
Downloaded: 260 times
Not followed.
License: MIT license
SRAM Click presents additional 1Mbit SRAM memory that can be added to device.
Do you want to subscribe in order to receive notifications regarding "SRAM Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "SRAM Click" changes.
Do you want to report abuse regarding "SRAM Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3677_sram_click.zip [354.53KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
SRAM Click presents additional 1Mbit SRAM memory that can be added to device.
We provide a library for the Sram Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Sram Click driver.
Config Object Initialization function.
void sram_cfg_setup ( sram_cfg_t *cfg );
Initialization function.
SRAM_RETVAL sram_init ( sram_t ctx, sram_cfg_t cfg );
Click Default Configuration function.
void sram_default_cfg ( sram_t *ctx );
Function write the 8-bit data to the target 24-bit register address of 23LC1024 chip.
void sram_write_byte( sram_t *ctx, uint32_t reg_address, uint8_t write_data );
Function read the 8-bit data to the target 24-bit register address of 23LC1024 chip.
uint8_t sram_read_byte( sram_t *ctx, uint32_t reg_address );
SRAM Click write and read data from 23LC1024 Serial RAM device.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
sram_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " Application Init\r\n" );
Delay_ms ( 100 );
// Click initialization.
sram_cfg_setup( &cfg );
SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
sram_init( &sram, &cfg );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " ------ SRAM Click ----- \r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
log_printf( &logger, " -- Initialization done --\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. Results are being sent to the UART where you can track their changes. All data logs on USB UART for aproximetly every 5 sec.
void application_task ( void )
{
log_printf( &logger, " Writing text :\r\n" );
for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
{
sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
Delay_ms ( 100 );
log_printf( &logger, "%c", send_buffer[ n_cnt ] );
mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
}
log_printf( &logger, "\r\n" );
log_printf( &logger, " Read text :\r\n" );
log_printf( &logger, "%s", &mem_data[ 0 ] );
log_printf( &logger, "\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.