TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139059 times)
  2. FAT32 Library (71592 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SRAM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: SRAM

Downloaded: 254 times

Not followed.

License: MIT license  

SRAM Click presents additional 1Mbit SRAM memory that can be added to device.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SRAM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SRAM Click" changes.

Do you want to report abuse regarding "SRAM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SRAM Click

SRAM Click presents additional 1Mbit SRAM memory that can be added to device.

sram_click.png

Click Product page


Click library

  • Author : Mihajlo Djordjevic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Sram Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Sram Click driver.

Standard key functions :

  • Config Object Initialization function.

    void sram_cfg_setup ( sram_cfg_t *cfg );

  • Initialization function.

    SRAM_RETVAL sram_init ( sram_t ctx, sram_cfg_t cfg );

  • Click Default Configuration function.

    void sram_default_cfg ( sram_t *ctx );

Example key functions :

  • Function write the 8-bit data to the target 24-bit register address of 23LC1024 chip.

    void sram_write_byte( sram_t *ctx, uint32_t reg_address, uint8_t write_data );

  • Function read the 8-bit data to the target 24-bit register address of 23LC1024 chip.

    uint8_t sram_read_byte( sram_t *ctx, uint32_t reg_address );

Examples Description

SRAM Click write and read data from 23LC1024 Serial RAM device.

The demo application is composed of two sections :

Application Init

Application Init performs Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    sram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 100 );

    //  Click initialization.

    sram_cfg_setup( &cfg );
    SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sram_init( &sram, &cfg );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ------ SRAM Click  ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );

    log_printf( &logger, " -- Initialization done --\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

Application Task

SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. Results are being sent to the UART where you can track their changes. All data logs on USB UART for aproximetly every 5 sec.


void application_task ( void )
{
    log_printf( &logger, " Writing text :\r\n" );

    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
        Delay_ms ( 100 );

        log_printf( &logger, "%c", send_buffer[ n_cnt ] );

        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
    }

    log_printf( &logger, "\r\n" );
    log_printf( &logger, " Read text :\r\n" );
    log_printf( &logger, "%s", &mem_data[ 0 ] );
    log_printf( &logger, "\r\n" );
    log_printf( &logger, "--------------------------\r\n" );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Sram

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

HOD CAP Click

0

HOD CAP Click is a compact add-on board that adds a smart sensing solution to your application. This board features the AS8579, a capacitive sensor from ams OSRAM. The sensor features I/Q signal demodulation, parasitic influences from cable, and PCB protection. It has ten sense outputs, five of which come with sensing line filter circuits. This Click board™ makes the perfect solution for the development of autonomous driving applications such as hands-on steering wheel detection and detection of any human presence inside a vehicle or outside of the vehicle, e.g., for automatic trunk opener and more.

[Learn More]

ECG 4 Click

0

ECG 4 Click is a complete solution for the development of ECG and Heart-Rate (HR) applications, based on the BMD101, a specialized bio-signal sensing System-on-Chip (SoC).

[Learn More]

Brushless 5 Click

0

Brushless 5 Click is a 3 phase sensorless BLDC motor controller, with a soft-switching feature for reduced motor noise and EMI, and precise BEMF motor sensing, which eliminates the need for Hall-sensors in motor applications.

[Learn More]