TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141926 times)
  2. FAT32 Library (75070 times)
  3. Network Ethernet Library (59368 times)
  4. USB Device Library (49362 times)
  5. Network WiFi Library (45172 times)
  6. FT800 Library (44742 times)
  7. GSM click (31324 times)
  8. mikroSDK (30273 times)
  9. microSD click (27690 times)
  10. PID Library (27580 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Step Up Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 477 times

Not followed.

License: MIT license  

Step Up Click is a fixed frequency DC-DC step-up (boost) regulator, which can be obtained from any low voltage input - such as NiCd, NiMH or one cell Li-Po/Li-Ion batteries.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Step Up Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Step Up Click" changes.

Do you want to report abuse regarding "Step Up Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Step Up Click

Step Up Click is a fixed frequency DC-DC step-up (boost) regulator, which can be obtained from any low voltage input - such as NiCd, NiMH or one cell Li-Po/Li-Ion batteries.

stepup_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the StepUp Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for StepUp Click driver.

Standard key functions :

  • Config Object Initialization function.

    void stepup_cfg_setup ( stepup_cfg_t *cfg );

  • Initialization function.

    STEPUP_RETVAL stepup_init ( stepup_t ctx, stepup_cfg_t cfg );

  • Click Default Configuration function.

    void stepup_default_cfg ( stepup_t *ctx );

Example key functions :

  • This function calculates ouput value in percent

    float stepup_get_percent ( uint16_t out_value );

  • This function sets the EN pin state

    void stepup_en_set ( stepup_t *ctx, uint8_t pin_state );

  • This function sets output value

    uint8_t stepup_set_out ( stepup_t *ctx, uint16_t out_value );

Examples Description

This application enables usage of DC-DC step-up (boost) regulator.>

The demo application is composed of two sections :

Application Init

Initializes SPI driver, sets config word, initializes and configures the device


void application_init ( void )
{
    log_cfg_t log_cfg;
    stepup_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "Application Init" );

    //  Click initialization.

    stepup_cfg_setup( &cfg );
    STEPUP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    stepup_init( &stepup, &cfg );

    stepup_default_cfg( &stepup );

    Delay_ms ( 100 );
    log_info( &logger, "Application Task" );
}

Application Task

Sets 3 different boost precentage value to device, value changes every 10 seconds.


void application_task ( void )
{
    log_info( &logger, "Setting DAC boost to 10%%" );
    stepup_set_percentage( &stepup, 10 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_info( &logger, "Setting DAC boost to 60%%" );
    stepup_set_percentage( &stepup, 60 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_info( &logger, "Setting DAC boost to 30%%" );
    stepup_set_percentage( &stepup, 30 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

Additional Functions :

stepup_logPercent() - calls 'stepup_getPercent()' function to get output value in expressed as percentage and logs that value.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.StepUp

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 14 click

5

Thermo 14 Click uses the STTS22H digital temperature sensor and thermal watchdog, which can measure temperature measurements between -40°C and +125°C so that the temperature measurement data can be processed by the host MCU. Thermo 14 click provides an accuracy of ±0.5°C in the range from -10°C to 60°C.

[Learn More]

Breakout game - demo project

0

Game description: Breakout is an arcade game developed and published on May 13, 1976. - In Breakout, a layer of bricks lines the top third of the screen and the goal is to destroy them all. A ball moves straight around the screen, bouncing off the top and two sides of the screen. .......

[Learn More]

6DOF IMU 11 Click

0

The 6DOF IMU 11 Click is a Click board™ based on the KMX63, a 6 Degrees-of-Freedom inertial sensor system on a single, silicon chip, which is designed to strike a balance between current consumption and noise performance with excellent bias stability over temperature.

[Learn More]