TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140535 times)
  2. FAT32 Library (73023 times)
  3. Network Ethernet Library (58029 times)
  4. USB Device Library (48212 times)
  5. Network WiFi Library (43822 times)
  6. FT800 Library (43293 times)
  7. GSM click (30358 times)
  8. mikroSDK (28985 times)
  9. PID Library (27116 times)
  10. microSD click (26719 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MIC 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Microphone

Downloaded: 274 times

Not followed.

License: MIT license  

MIC 2 Click is equipped with a small electret microphone, accompanied by a suitable pre-amplifying circuit. The small electret microphone is not capable of providing sufficient line-level output; therefore, the pre-amp has to be used

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MIC 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MIC 2 Click" changes.

Do you want to report abuse regarding "MIC 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MIC 2 Click

MIC 2 Click is equipped with a small electret microphone, accompanied by a suitable pre-amplifying circuit. The small electret microphone is not capable of providing sufficient line-level output; therefore, the pre-amp has to be used

mic2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : ADC type

Software Support

We provide a library for the Mic2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mic2 Click driver.

Standard key functions :

  • mic2_cfg_setup Config Object Initialization function.

    void mic2_cfg_setup ( mic2_cfg_t *cfg ); 
  • mic2_init Initialization function.

    err_t mic2_init ( mic2_t *ctx, mic2_cfg_t *cfg );

Example key functions :

  • mic2_set_potentiometer This function set the value of digital potentiometer.

    void mic2_set_potentiometer ( mic2_t *ctx, uint8_t ptt_value );
  • mic2_read_an_pin_value This function reads results of AD conversion of the AN pin.

    err_t mic2_read_an_pin_value ( mic2_t *ctx, uint16_t *data_out );
  • mic2_read_an_pin_voltage This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.

    err_t mic2_read_an_pin_voltage ( mic2_t *ctx, float *data_out );

Example Description

This range is suited for audio and/or speech applications.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and sets the digital potentiometer.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mic2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    mic2_cfg_setup( &cfg );
    MIC2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mic2_init( &mic2, &cfg );

    mic2_set_potentiometer( &mic2, 35 );
    log_info( &logger, " Application Task " );
}

Application Task

Reads the AN pin voltage and displays the results on the USB UART every 100ms.


void application_task ( void )
{
    float voltage = 0;
    if ( MIC2_OK == mic2_read_an_pin_voltage ( &mic2, &voltage ) ) 
    {
        log_printf( &logger, " AN Voltage : %.3f[V]\r\n\n", voltage );
        Delay_ms ( 100 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mic2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buck 2 click

0

Buck 2 click is a powerful step down DC-DC switching regulator. It gives a high precision regulated voltage at its output and it can handle an ample amount of current.

[Learn More]

Pressure 2 click

5

Pressure 2 click carries MS5803, a high resolution MEMS pressure sensor with an operating range from 0 to 14 bars. The module comprises a high linear pressure sensor and an ultra low power 24 bit ADC. Pressure 2 click communicates with the target board MCU either through mikroBUS SPI (CS, SCK, SDO, SDI) or I2C lines (SCL, SDA).

[Learn More]

N-PLC Click

0

N-PLC Click is a compact add-on board that uses existing electrical power lines to transmit data signals. This board features the SM2400, an advanced multi-standard Narrow-band Power Line Communication (N-PLC) modem from Semitech. The SM2400 features a dual-core architecture, a DSP core for N-PLC modulations, and a 32-bit core for running protocols for superior communication performance and flexibility for various open standards and customized implementations. It includes firmware options for IEEE 1901.2 compliant PHY and MAC layers, a 6LoWPAN data link layer, and special modes for industrial IoT applications. In addition to the ability to accept signals from another PLC modem or the power line communication AC coupling circuit, this board also has a handful of other features, such as a selectable interface and power supply, firmware update capabilities, LED indicators, and many others.

[Learn More]