TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57643 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

3D Hall 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 256 times

Not followed.

License: MIT license  

3D Hall 7 Click is a very accurate, magnetic field sensing Click board™, used to measure the intensity of the magnetic field across three perpendicular axes.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "3D Hall 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "3D Hall 7 Click" changes.

Do you want to report abuse regarding "3D Hall 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


3D Hall 7 Click

3D Hall 7 Click is a very accurate, magnetic field sensing Click board™, used to measure the intensity of the magnetic field across three perpendicular axes.

3dhall7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Nov 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the 3dHall7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 3dHall7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c3dhall7_cfg_setup ( c3dhall7_cfg_t *cfg );

  • Initialization function.

    C3DHALL7_RETVAL c3dhall7_init ( c3dhall7_t ctx, c3dhall7_cfg_t cfg );

  • Click Default Configuration function.

    void c3dhall7_default_cfg ( c3dhall7_t *ctx );

Example key functions :

  • Get Axis data function.

    void c3dhall7_get_axis_data( c3dhall7_t ctx, T_C3DHALL7_AXIS axis)

  • Measurement status function.

    void c3dhall7_get_status ( c3dhall7_t ctx, T_C3DHALL7_STATUS status );

  • Measurement status function.

    void c3dhall7_get_status ( c3dhall7_t ctx, T_C3DHALL7_STATUS status );

Examples Description

Read magnet positions.

The demo application is composed of two sections :

Application Init

Initializes driver init, test communication and configuration device for measurement.


void application_init ( c3dhall7_t *ctx, void )
{
    c3dhall7_dev_info_t info;

    log_cfg_t log_cfg;
    c3dhall7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c3dhall7_cfg_setup( &cfg );
    C3DHALL7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c3dhall7_init( &c3dhall7, &cfg );

    c3dhall7_device_reset( &c3dhall7 );
    Delay_ms ( 1000 );
    c3dhall7_read_data( &c3dhall7, 0x01, &red_data, 1 );

    Delay_100ms( );

    for ( ; ; );
    // Test communication 
    c3dhall7_deviceInfo( &info );
    if ( info.device_id == C3DHALL7_DEVICE_ID )
    {
        mikrobus_logW_write( "---- Communication [ OK ]!!! ----", LOG_LINE );
    }
    else
    {
        mikrobus_log_write( "---- Communication [ ERROR ]!!! ----", LOG_LINE );

        for ( ; ; );
    }

    // Configuration 

    c3dhall7_default_cfg ( &c3dhall7 );
}

Application Task

Reads 3 Axis of the magnetic sensor and logs this data to USBUART every 500ms.


void application_task ( void )
{
    c3dhall7_axix_t axis;

    char demo_text[ 50 ];

    c3dhall7_get_axis_data( &axis );

    mikrobus_log_write( "---- Measurement data of magnetic sensor ----", LOG_LINE );

    log_printf( &logger, "X axis: %d \r\n", axis.x );

    log_printf( &logger, "Y axis: %d \r\n", axis.y );

    log_printf( &logger, "Z axis: %d \r\n", axis.z );

    mikrobus_log_write( "---------------------------------------------", LOG_LINE);
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.3dHall7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Air Motion Click

0

Air Motion Click is a compact add-on board that contains a 6-axis inertial measurement unit. This board features TDK InvenSense’s ICM-40627, a 6-axis MEMS MotionTracking™ device that combines a 3-axis user-selectable gyroscope accelerometer.

[Learn More]

Heart Rate 7 Click

0

Heart Rate 7 Click is an optical biosensor Click board™ which can be used for heart-rate monitoring (HRM). This Click board™ employs a very sensitive analog front-end IC with high dynamic range, which ensures accurate and reliable readings. This analog front-end IC is coupled with the optical front end, which consists of a sensitive photo-diode (PD) and two high brightness green LEDs.

[Learn More]

IR Sense 5 Click

0

IR Sense 5 Click is a compact add-on board designed for accurate, non-contact surface temperature measurement. This board features the ZTP-148SRC1, a thermopile IR sensor from Amphenol, with a measurement range from -20 to +100°C, an active area of 0.7x0.7mm², and a typical field of view of 85 degrees. The board also integrates an OPA2365AIDR OpAmp for signal amplification and an MCP3221 analog-to-digital converter for digitizing the output. Additional features include output offset selection and test points for signal monitoring.

[Learn More]