TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136714 times)
  2. FAT32 Library (69925 times)
  3. Network Ethernet Library (55937 times)
  4. USB Device Library (46261 times)
  5. Network WiFi Library (41884 times)
  6. FT800 Library (41150 times)
  7. GSM click (28979 times)
  8. PID Library (26411 times)
  9. mikroSDK (26355 times)
  10. microSD click (25353 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

USB UART 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: USB

Downloaded: 215 times

Not followed.

License: MIT license  

USB UART 3 click is a versatile and feature-rich USB to UART interface from Silicon Labs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "USB UART 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "USB UART 3 click" changes.

Do you want to report abuse regarding "USB UART 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


USB UART 3 click

USB UART 3 click is a versatile and feature-rich USB to UART interface from Silicon Labs.

usbuart3_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the UsbUart3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for UsbUart3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void usbuart3_cfg_setup ( usbuart3_cfg_t *cfg );

  • Initialization function.

    USBUART3_RETVAL usbuart3_init ( usbuart3_t ctx, usbuart3_cfg_t cfg );

Example key functions :

  • Function for reset

    void usbuart3_reset ( usbuart3_t *ctx );

  • Set device mode

    uint8_t usbuart3_get_susp ( usbuart3_t *ctx );

  • Function for send command

    void usbuart3_send_command ( usbuart3_t ctx, char command );

Examples Description

This example reads and processes data from USB UART 3 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    usbuart3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    usbuart3_cfg_setup( &cfg );
    USBUART3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    usbuart3_init( &usbuart3, &cfg );

    usbuart3_reset( &usbuart3 );
}

Application Task

Reads the received data.


void application_task ( void )
{
    rsp_size = usbuart3_generic_read( &usbuart3, uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );

    if ( rsp_size > 0 )
    {  
        usbuart3_generic_write( &usbuart3, uart_rx_buffer, rsp_size );
        log_printf( &logger, "%s", uart_rx_buffer );
        memset( uart_rx_buffer, 0, rsp_size );
    } 
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UsbUart3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Heart Rate 2 click

0

Heart Rate 2 Click is an add-on board based on MAXM86161 from Maxim Integrated a complete, integrated, optical data acquisition system, ideal for optical pulse oximetry and heart-rate detection applications. The optical readout has a low-noise signal conditioning analog front-end (AFE), including 19-bit ADC, an industry-lead ambient light cancellation (ALC) circuit, and a picket fence detect and replace algorithm.

[Learn More]

SHT AN click

5

SHT AN Click is a sensorics based add on board which can be used for measuring humidity and temperature. It features fully calibrated, linearized and temperature compensated SHT31-ARP-B sensor with analog output. This sensor is built on a new technology CMOSens sensor chip from Sensirion.

[Learn More]

UART MUX 2 click

0

UART MUX 2 Click is a compact add-on board that enables pseudo-multidrop RS232 transmission. This board features the MAX399, a precise CMOS analog multiplexer that allows four remote RS-232 transceivers to share a single UART from Maxim Integrated. It offers fast switching speeds with a transition time of less than 250ns and low on-resistance less than 100Ω while retains CMOS-logic input compatibility and fast switching. Channel selection is performed through a set of specific GPIO pins and possesses additional functionality such as the manual ON/OFF feature. This Click board™ is suitable for a wide range of applications, from industrial and instrumentation to a consumer, communications, data-acquisition systems, and many more.

[Learn More]