TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139253 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UT-L 7-SEG R Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 207 times

Not followed.

License: MIT license  

UT-L 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UT-L 7-SEG R Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UT-L 7-SEG R Click" changes.

Do you want to report abuse regarding "UT-L 7-SEG R Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UT-L 7-SEG R Click

UT-L 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

utl7segr_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the UT-L7-SEGR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for UT-L7-SEGR Click driver.

Standard key functions :

  • utl7segr_cfg_setup Config Object Initialization function.

    void utl7segr_cfg_setup ( utl7segr_cfg_t *cfg );
  • utl7segr_init Initialization function.

    UTL7SEGR_RETVAL utl7segr_init ( utl7segr_t *ctx, utl7segr_cfg_t *cfg );
  • utl7segr_default_cfg Click Default Configuration function.

    void utl7segr_default_cfg ( utl7segr_t *ctx );

Example key functions :

  • utl7segr_generic_write This function writes a desired number of data bytes starting from the selected register by using SPI serial interface.

    err_t utl7segr_generic_write ( utl7segr_t *ctx, uint8_t *data_in );
  • utl7segr_display_state This function turns display on and off.

    
    void utl7segr_display_state ( utl7segr_t *ctx, uint8_t state );

- `utl7segr_display_number` This function is used to show the number on the display.
```c
void utl7segr_display_number ( utl7segr_t *ctx, uint8_t number, uint8_t dot_pos );

Example Description

The demo application shows basic usage of the UT 7 SEG display.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.


void application_init ( void ) {
    log_cfg_t log_cfg;            /**< Logger config object. */
    utl7segr_cfg_t utl7segr_cfg;  /**< Click config object.  */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    // Click initialization.

    utl7segr_cfg_setup( &utl7segr_cfg );
    UTL7SEGR_MAP_MIKROBUS( utl7segr_cfg, MIKROBUS_1 );
    err_t init_flag  = utl7segr_init( &utl7segr, &utl7segr_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    utl7segr_default_cfg ( &utl7segr );
    log_info( &logger, " Application Task " );
}

Application Task

Draws numbers from 0 to 99 on the screen.


void application_task ( void ) {  
    log_info( &logger, "---- Number counter ----" );

    for ( uint8_t cnt = 0; cnt < 100; cnt++ ) {
        utl7segr_display_number( &utl7segr, cnt, UTL7SEGR_DOT_LEFT );
        Delay_ms ( 500 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UT-L7-SEGR

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BT Audio Click

0

If you are getting tired of all those cables you need just to listen to your favorite song over speakers.

[Learn More]

Button 2 Click

0

Button 2 Click is a compact add-on board designed for simple and efficient tactile input detection. This board features the TL3215AF160BQ, a TL3215 series of tactile switches from E-Switch, featuring high reliability and precise operation. The switch has a 2mm actuator, 160gf actuation force, silver contact material, and a lifespan of 1,000,000 cycles, while the integrated blue LED provides visual feedback. The board supports the new Click Snap feature, allowing easy detachment of the sensor area for flexible use.

[Learn More]

Surface Temp Click

0

Surface temp Click is high accuracy digital temperature sensor Click board™, offering breakthrough performance over a wide industrial range. It is equipped with the ADT7420 - an accurate 16-Bit Digital I2C temperature sensor from Analog Devices.

[Learn More]