TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141334 times)
  2. FAT32 Library (74179 times)
  3. Network Ethernet Library (58760 times)
  4. USB Device Library (48850 times)
  5. Network WiFi Library (44559 times)
  6. FT800 Library (44145 times)
  7. GSM click (30881 times)
  8. mikroSDK (29722 times)
  9. PID Library (27368 times)
  10. microSD click (27291 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Color 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 359 times

Not followed.

License: MIT license  

Color 10 Click is carrying VEML3328 sensor for RGB and IR light sensing as well as the RGB diode incorporated on the board which makes it good color detection device when its combined with a white LED. The VEML3328 sensor senses red, green, blue, clear and IR light by incorporating photodiodes, amplifiers, and analog / digital circuits into a single CMOS chip. With this sensor, the brightness and color temperature of a display backlight can be adjusted based on the ambient light source, and it can differentiate indoor from outdoor lighting environments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Color 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Color 10 Click" changes.

Do you want to report abuse regarding "Color 10 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Color 10 Click

Color 10 Click is carrying VEML3328 sensor for RGB and IR light sensing as well as the RGB diode incorporated on the board which makes it good color detection device when its combined with a white LED. The VEML3328 sensor senses red, green, blue, clear and IR light by incorporating photodiodes, amplifiers, and analog / digital circuits into a single CMOS chip. With this sensor, the brightness and color temperature of a display backlight can be adjusted based on the ambient light source, and it can differentiate indoor from outdoor lighting environments.

color10_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C type

Software Support

We provide a library for the Color10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Color10 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void color10_cfg_setup ( color10_cfg_t *cfg );

  • Initialization function.

    COLOR10_RETVAL color10_init ( color10_t ctx, color10_cfg_t cfg );

Example key functions :

  • This function reads data from the desired register.

    uint16_t color10_generic_read ( color10_t *ctx, uint8_t cmd_addr );

  • This function calculates the color value.

    float color10_get_color_value ( color10_t *ctx );

  • This function identifies the color using the color value.

    uint8_t color10_get_color ( float color_value );

Examples Description

Color 10 Click is carrying a sensor for RGB and IR light sensing as well as the RGB diode incorporated on the board which makes it good color detection device when its combined with a white LED.

The demo application is composed of two sections :

Application Init

Initialize I2C driver


void application_init ( void )
{
    log_cfg_t log_cfg;
    color10_cfg_t cfg;
    uint8_t id_data;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    color10_cfg_setup( &cfg );
    COLOR10_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    color10_init( &color10, &cfg );
    Delay_ms ( 500 );

    if ( color10_get_id( &color10 ) == COLOR10_DEVICE_ID )
    {
         log_printf( &logger, " -DEVICE ID OK\r\n" );
    }
    else
    {
        log_printf( &logger, " -DEVICE ID ERROR\r\n" );
        for( ; ; );
    }

    color10_config( &color10, COLOR10_CFG_HIGH_DYNAMIC_RANGE_1 |
                    COLOR10_CFG_INTEGRATION_TIME_SETT_50_MS |
                    COLOR10_CFG_AUTO_MODE |
                    COLOR10_CFG_TRIGGER_NO |
                    COLOR10_CFG_POWER_ON |
                    COLOR10_CFG_GAIN_1_X1 |
                    COLOR10_CFG_GAIN_2_X1 );
    log_printf( &logger, "-----Init done------\r\n" );
    Delay_ms ( 500 );
}

Application Task

This example senses orange, red, pink, purple, blue, cyan, green or yellow color and IR light and print it via UART terminal.


void application_task ( void )
{
    uint16_t read_data;
    float color_data;

    read_data = color10_generic_read ( &color10, COLOR10_CMD_REG_IR );
    log_printf( &logger, " -IR value: %d\r\n", read_data );
    log_printf( &logger, " -Color: " );
    write_color( );

    log_printf( &logger, " ********************** \r\n" );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Color10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

pH click

5

pH Click is a compact add-on board that provides an opportunity for the user to read pH with the same accuracy and capabilities as with some other expensive solutions.

[Learn More]

Magnetic Rotary 6 Click

0

Magnetic Rotary 6 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5247U, an SPI-configurable high-resolution dual rotary position sensor for fast absolute angle measurement over a full 360-degree range from ams AG. The AS5047D is equipped with revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency and offers a robust design that suppresses the influence of any homogenous external stray magnetic field. It also comes with onboard headers reserved for incremental and commutation signals of their respective A/B/I and U/V/W signals, with a maximum resolution of 16384 steps / 4096 pulses per revolution, alongside embedded self-diagnostics features.

[Learn More]

Pressure 20 Click

0

Pressure 20 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ICP-20100, a high-accuracy digital barometric pressure and temperature sensor from TDK InvenSense. The ICP-20100 is based on MEMS capacitive technology with ultra-low noise, low power consumption, and temperature stability alongside programmable output: all-pressure, all-temperature, or pressure and temperature output. It converts output data into a 20-bit digital value and sends the information via a configurable host interface that supports SPI and I2C serial communications. It measures pressure from 30kPa up to 110kPa with an accuracy of ±20Pa over a wide operating temperature range.

[Learn More]