TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142136 times)
  2. FAT32 Library (75453 times)
  3. Network Ethernet Library (59573 times)
  4. USB Device Library (49579 times)
  5. Network WiFi Library (45370 times)
  6. FT800 Library (45033 times)
  7. GSM click (31487 times)
  8. mikroSDK (30591 times)
  9. microSD click (27906 times)
  10. PID Library (27641 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart Rate 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 436 times

Not followed.

License: MIT license  

Heart Rate 8 Click is an optical biosensor Click board™, designed for heart-rate monitoring (HRM). This Click board™ employs a specialized sensor that incorporates three LED drivers and two photo-sensing elements, sensitive to green and IR light.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart Rate 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart Rate 8 Click" changes.

Do you want to report abuse regarding "Heart Rate 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Heart Rate 8 Click

Heart Rate 8 Click is an optical biosensor Click board™, designed for heart-rate monitoring (HRM). This Click board™ employs a specialized sensor that incorporates three LED drivers and two photo-sensing elements, sensitive to green and IR light.

heartrate8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the HeartRate8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HeartRate8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void heartrate8_cfg_setup ( heartrate8_cfg_t *cfg );

  • Initialization function.

    HEARTRATE8_RETVAL heartrate8_init ( heartrate8_t ctx, heartrate8_cfg_t cfg );

  • Click Default Configuration function.

    void heartrate8_default_cfg ( heartrate8_t *ctx );

Example key functions :

  • Function gets the selected data from the determined LED Data registers.

uint8_t heartrate8_get_data ( heartrate8_t ctx, uint8_t data_select, uint16_t led_out_on, uint16_t *led_out_off );

  • Function checks INT pin, is interrupt occured or not.

    uint8_t heartrate8_check_int ( heartrate8_t *ctx );

  • Function performs the measurement synchronization.

    void heartrate8_meas_sync ( heartrate8_t *ctx );

Examples Description

This example demonstrates the use of Hearth rate 8 Click board.

The demo application is composed of two sections :

Application Init

Performs the device reset. The device is configured to work in Single Measurement Mode with LED pulsing.


void application_init ( void )
{
    log_cfg_t log_cfg;
    heartrate8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Initializing ----" );

    //  Click initialization.

    heartrate8_cfg_setup( &cfg );
    HEARTRATE8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    heartrate8_init( &heartrate8, &cfg );
    Delay_ms ( 500 );
    heartrate8_default_cfg( &heartrate8 );
    i = 0;

    log_printf( &logger, "HeartRate 8 is initialized\n");
}

Application Task

Sends command to start measurement cycle, then waits until measurement cycle is finished. When measurement cycle is done, gets LED ON and LED OFF Data for the selected LED driver (GREEN or IR LED) and performs data plotting on serial plotter every 35ms.


void application_task ( void )
{
    heartrate8_start_measure( &heartrate8 );

    int_check = heartrate8_check_int( &heartrate8 );
    while (int_check != HEARTRATE8_INT_ACTIVE)
    {
        int_check = heartrate8_check_int( &heartrate8 );
    }

    heartrate8_get_data( &heartrate8, HEARTRATE8_GREEN_DATA_GET, &led_data_on, &led_data_off );
    plot_res( led_data_on );
    int_check = heartrate8_int_clear( &heartrate8 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

USB-C Sink 3 Click

0

USB C Sink 3 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33771, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]

Haptic 4 Click

0

Haptic 4 Click is a compact add-on board that enables precise haptic feedback in various electronic projects. This board features the DA7280, a haptic driver designed to drive linear resonant actuator (LRA) and eccentric rotating mass (ERM) actuators from Renesas. The DA7280 boasts a differential output drive and continuous motion sensing for calibration-free operation, coupled with wide-band support to leverage the capabilities of modern LRAs. It supports six independent haptic sequences activated directly via mikroBUS™ pins or externally through I2C or PWM signals, offering extensive flexibility for haptic configuration. Ideal for enhancing user experience in wearables, electronic peripherals, automotive interfaces, industrial controls, and AR/VR controllers, this Click board™ opens new possibilities for interactive and tactile-responsive technology.

[Learn More]

A5000 Plug n Trust Click

0

A5000 Plug&Trust Click is a compact add-on board representing a ready-to-use secure IoT authenticator. This board features the A5000, an Edge Lock® Secure Authenticator from NXP Semiconductors. The A5000 provides a root of trust at the IC level, giving an IoT authentication system state-of-the-art security capability. It allows for securely storing and provisioning credentials and performing cryptographic operations for security-critical communication and authentication functions. It has an independent Common Criteria EAL 6+ security certification up to OS level and supports ECC asymmetric cryptographic and AES/3DES symmetric algorithms.

[Learn More]