TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load Cell 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 261 times

Not followed.

License: MIT license  

Load cell 2 Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell 2 Click can be used with the strain gauge type of load cells with external differential reference voltage range from 0.1V to 5V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load Cell 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load Cell 2 Click" changes.

Do you want to report abuse regarding "Load Cell 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Load Cell 2 Click

Load cell 2 Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell 2 Click can be used with the strain gauge type of load cells with external differential reference voltage range from 0.1V to 5V.

loadcell2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the LoadCell2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LoadCell2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void loadcell2_cfg_setup ( loadcell2_cfg_t *cfg );

  • Initialization function.

    LOADCELL2_RETVAL loadcell2_init ( loadcell2_t ctx, loadcell2_cfg_t cfg );

  • Click Default Configuration function.

    void loadcell2_default_cfg ( loadcell2_t *ctx );

Example key functions :

  • Get weight function.

    float loadcell2_get_weight ( loadcell2_t ctx, loadcell2_data_t cell_data );

  • Get results function.

    uint32_t loadcell2_get_result ( loadcell2_t *ctx );

  • Calibration function.

    uint8_t loadcell2_calibration ( loadcell2_t ctx, uint16_t cal_val, loadcell2_data_t cell_data );

Examples Description

Load Cell 2 Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and performs the device reset, and performs the device reset, set power on and default configuration. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void )
{
    log_cfg_t log_cfg;
    loadcell2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "  - Application Init -   \r\n" );

    //  Click initialization.

    loadcell2_cfg_setup( &cfg );
    LOADCELL2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    loadcell2_init( &loadcell2, &cfg );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "     Load cell Click     \r\n");
    log_printf( &logger, "-------------------------\r\n");
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Reset all registers   \r\n");
    loadcell2_reset( &loadcell2 );
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "        Power On         \r\n");
    loadcell2_power_on( &loadcell2 );
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Set default config.   \r\n");
    loadcell2_default_cfg( &loadcell2 );
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "      Calibrate AFE      \r\n");
    loadcell2_calibrate_afe( &loadcell2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "     Tare the scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " >> Remove all object << \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, " please remove all object\r\n");
    log_printf( &logger, "     from the scale.     \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start tare scales    \r\n");
    loadcell2_tare ( &loadcell2, &cell_data );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Tarring is complete   \r\n");
    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Calibrate Scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, "   >>> Load etalon <<<   \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, "place 1000g weight etalon\r\n");
    log_printf( &logger, "    on the scale for     \r\n");
    log_printf( &logger, "   calibration purpose.  \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start calibration    \r\n");

    if ( loadcell2_calibration ( &loadcell2, LOADCELL2_WEIGHT_1000G, &cell_data ) == LOADCELL2_GET_RESULT_OK )
    {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "    Calibration  Done    \r\n");

        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n");
        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, " In the following 10 sec \r\n");
        log_printf( &logger, "   remove 1000g weight   \r\n");
        log_printf( &logger, "   etalon on the scale.  \r\n");
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else
    {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "   Calibration  Error   \r\n");
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Start measurements :  \r\n");
    log_printf( &logger, "-------------------------\r\n");
}

Application Task

This is an example which demonstrates the use of Load Cell 2 Click board. Display the measurement of scales in grams [g]. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.


void application_task ( void )
{
    weight_val = loadcell2_get_weight( &loadcell2, &cell_data );

    log_printf(&logger, "   Weight : %5.2f g\r\n", weight_val );

    Delay_ms ( 1000 );
}  

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Oximeter click

5

Oximeter click is a versatile photometric Click board, perfectly suited for measuring the blood oxygen saturation. It employs ADPD105, a highly configurable photometric front end (AFE) device from Analog Devices.

[Learn More]

ROTARY B Click

0

Rotary B Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 blue LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click™ can be used with either a 3.3V or 5V power supply.

[Learn More]

AlphaNum G click

5

AlphaNum G click is a simple solution for adding 14-segment alphanumeric displays to your device. The board carries two TLC5926 16-bit Constant-Current LED sink Drivers as well as a dual character LED 14-segment display. The board is designed to use either a 3.3V or 5V power supply.

[Learn More]