TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28441 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 225 times

Not followed.

License: MIT license  

Thermo 8 Click is a very accurate thermometer Click board™, with a very high typical measurement accuracy of ±0.25°C, and great data repeatability, with drift in the range of ±0.0625°C.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 8 Click" changes.

Do you want to report abuse regarding "Thermo 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermo 8 Click

Thermo 8 Click is a very accurate thermometer Click board™, with a very high typical measurement accuracy of ±0.25°C, and great data repeatability, with drift in the range of ±0.0625°C.

thermo8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Thermo8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo8_cfg_setup ( thermo8_cfg_t *cfg );

  • Initialization function.

    THERMO8_RETVAL thermo8_init ( thermo8_t ctx, thermo8_cfg_t cfg );

  • Click Default Configuration function.

    void thermo8_default_cfg ( thermo8_t *ctx );

Example key functions :

  • This function returns the temperature value in �C.

    float thermo8_get_temperature ( thermo8_t *ctx );

  • This function sets the conversion resoult temperature step depending on the passed constant.

    void thermo8_set_resolution ( thermo8_t *ctx, uint8_t r_cfg );

  • This function setting the temperature alarm levels for the lower, upper and critical alert levels.

    void thermo8_limit_set ( thermo8_t *ctx, uint8_t limit_reg_addr, float limit );

Examples Description

This application measures temperature.

The demo application is composed of two sections :

Application Init

Initialize device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    thermo8_cfg_setup( &cfg );
    THERMO8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo8_init( &thermo8, &cfg );
    Delay_ms ( 100 );
    thermo8_default_cfg( &thermo8 );
}

Application Task

Wait for the interrupt pin to be triggered. When the measured temperature breaches the upper or lower limit the temperature value as well as the status of the breach is is shown on the serial port (UART).


void application_task ( void )
{
    float t_data;
    char alert;
    char alert_on;

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    alert = thermo8_ale_get( &thermo8 );

    if ( alert == 0 )
    {
        t_data  = thermo8_get_temperature( &thermo8 );
        alert_on = thermo8_get_alert_stat( &thermo8 );
    }

    if ( alert_on & THERMO8_TLOWER_REACHED )
    {
        log_printf( &logger, "Temperature under the low limit: %.2f �C \r\n", t_data );
    }

    if ( alert_on & THERMO8_TUPPER_REACHED )
    {
        log_printf( &logger, "Temperature over the high limit: %.2f �C \r\n", t_data );
    } 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hall Current 8 25A Click

0

Hall Current 8 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4971-A025T5, a high-precision coreless current sensor for industrial/consumer applications from Infineon Technologies. The TLI4971-A025T5 has an analog interface and two fast overcurrent detection outputs, which support the protection of the power circuitry. Galvanic isolation is also provided according to the magnetic sensing principle. Infineon's monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 25A. This Click board™ is suitable for AC/DC current measurement applications: electrical drives, general-purpose inverters, chargers, current monitoring, overload, over-current detection, and many more.

[Learn More]

EERAM 5V Click

0

EERAM 5V Click is a static RAM (SRAM) memory Click board™ with the unique feature - it has a backup non-volatile memory array, used to store the data from the SRAM array. Since the SRAM is not able to maintain its content after the power loss, the non-volatile EEPROM backup can be a very handy addition that can be used to preserve the data, even after the power loss event. This is a very useful feature when working with critical or sensitive applications. The memory backup procedure can be executed both automatically and manually. When it is set to work in the manual mode, the onboard capacitor will act as a power source with enough power to complete the backup cycle. The power-on backup restore mode is also available, taking only about 25ms to complete.

[Learn More]

GNSS 15 Click

0

GNSS 15 Click is a compact add-on board for advanced automotive navigation and tracking applications. This board features the TESEO-VIC3DA, an automotive GNSS dead-reckoning module from STMicroelectronics. This module combines a 6-axis IMU with multi-constellation satellite reception, offering exceptional accuracy and dead-reckoning capabilities. It stands out for its rapid time-to-first-fix and the ability to receive firmware updates for enhanced performance. Designed for flexibility, it supports both UART and I2C communications, includes pins for precise odometer readings, and features an SMA antenna connector for superior signal quality.

[Learn More]