TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141920 times)
  2. FAT32 Library (75068 times)
  3. Network Ethernet Library (59360 times)
  4. USB Device Library (49360 times)
  5. Network WiFi Library (45171 times)
  6. FT800 Library (44738 times)
  7. GSM click (31318 times)
  8. mikroSDK (30273 times)
  9. microSD click (27690 times)
  10. PID Library (27578 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Semper Flash 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 460 times

Not followed.

License: MIT license  

Semper Flash 2 Click is a Click board™ which features the S25HL512T from Cypress, a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Semper Flash 2 Click can also be used for the code shadowing, execute-in-place (XIP), and data storage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Semper Flash 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Semper Flash 2 Click" changes.

Do you want to report abuse regarding "Semper Flash 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Semper Flash 2 Click

Semper Flash 2 Click is a Click board™ which features the S25HL512T from Cypress, a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Semper Flash 2 Click can also be used for the code shadowing, execute-in-place (XIP), and data storage.

semperflash2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : SPI type

Software Support

We provide a library for the SemperFlash2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SemperFlash2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void semperflash2_cfg_setup ( semperflash2_cfg_t *cfg );

  • Initialization function.

    SEMPERFLASH2_RETVAL semperflash2_init ( semperflash2_t ctx, semperflash2_cfg_t cfg );

  • Click Default Configuration function.

    void semperflash2_default_cfg ( semperflash2_t *ctx );

Example key functions :

  • This function writes data to the flash memory.

    uint8_t semperflash2_write_memory ( semperflash2_t ctx, uint32_t addr, uint8_t data_buf, uint16_t buf_size );

  • This function reads data from the flash memory.

    uint8_t semperflash2_read_memory (
    semperflash2_t ctx, uint32_t addr, uint8_t data_buf, uint16_t buf_size );

  • This function stores the device ID in the specified buffer.

    uint8_t semperflash2_get_device_id ( semperflash2_t ctx, uint8_t id_buf );

Examples Description

This example showcases how to initialize and use the Semper Flash 2 Click. The Click is a 512 Mbit SPI Flash memory module. Data can be stored in and read from the flash memory. There's also the option of erasing it's contents. Here's how to do it.

The demo application is composed of two sections :

Application Init

This function initializes and configures the Click and logger modules. Additional con- figuring is done in the default_cfg(...) function. The device ID should appear in the UART console if the setup finishes successfully.


void application_init ( void )
{
    log_cfg_t log_cfg;
    semperflash2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    semperflash2_cfg_setup( &cfg );
    SEMPERFLASH2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    semperflash2_init( &semperflash2, &cfg );
    semperflash2_default_cfg( &semperflash2 );
    id_check( );
    Delay_ms ( 500 );
}

Application Task

This function first erases the contents of the flash memory and then writes, reads and prints two strings in the UART console. It does so every 2 seconds.


void application_task ( void )
{
    char write_data_com[ 7 ] = "MikroE";
    char write_data_clk[ 15 ] = "Semper Flash 2";
    char read_buf_data[ 15 ] = { 0 };

    semperflash2_send_cmd( &semperflash2, SEMPERFLASH2_WRITE_ENABLE );
    semperflash2_erase_memory( &semperflash2, ADRESS_MEMORY );

    if ( COMPANY_FLAG == txt_flag )
    {
       semperflash2_send_cmd( &semperflash2, SEMPERFLASH2_WRITE_ENABLE );
       error_handler( semperflash2_write_memory( &semperflash2, ADRESS_MEMORY, write_data_com, 6 ) );
       error_handler( semperflash2_read_memory( &semperflash2, ADRESS_MEMORY, read_buf_data, 6 ) );
       log_printf( &logger, "%s\r\n", read_buf_data );
       txt_flag = CLICK_FLAG;       
    }
    else if ( CLICK_FLAG == txt_flag )
    {
       semperflash2_send_cmd( &semperflash2, SEMPERFLASH2_WRITE_ENABLE );
       error_handler( semperflash2_write_memory( &semperflash2, ADRESS_MEMORY, write_data_clk, 14 ) );
       error_handler( semperflash2_read_memory( &semperflash2, ADRESS_MEMORY, read_buf_data, 14 ) );
       log_printf( &logger, "%s\r\n", read_buf_data );
       txt_flag = COMPANY_FLAG;
    }

    log_printf( &logger, "....................\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SemperFlash2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LED Driver 15 Click

0

LED Driver 15 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the MP3309C, a fully integrated synchronous boost white LED driver with an I2C interface from Monolithic Power Systems. The MP3309C offers high efficiency, delivers up to 40mA of LED current, and operates from a voltage of mikroBUS™ power rails, supporting up to 8 white LEDs in series. It also features a programmable switching frequency to optimize efficiency, supports analog and PWM dimming, and has multiple built-in protection functions that protect the circuit during abnormalities.

[Learn More]

NFC 6 Click

0

NFC 6 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R95, a near-field communication transceiver from STMicroelectronics. It supports reader and writer operating modes and emulates ISO/IEC 14443-3 Type A cards. The RF communications are done over the 13.56MHz. The transceiver features tag detection mode, field detection mode, transmission and reception modes, and more.

[Learn More]

TFT Proto 4.3in - Example

1

TFT Proto 4.3in carries a 480x272 ATO43B35 TFT screen covered with a 4-wire resistive touchscreen panel. To drive the 262k-color display, there's an SSD1963 graphic controller. The touchpanel is driven by an advanced STMPE811 controller. Source code examples demonstrate calculator on TFT display.

[Learn More]