We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: CAN
Downloaded: 188 times
Not followed.
License: MIT license
CAN Isolator Click provides isolated CAN communication. It carries the ADM3053 signal and power isolated CAN transceiver with an integrated isolated DC-to-DC converter.
Do you want to subscribe in order to receive notifications regarding "CAN Isolator Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "CAN Isolator Click" changes.
Do you want to report abuse regarding "CAN Isolator Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4026_can_isolator_cli.zip [478.34KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
CAN Isolator Click provides isolated CAN communication. It carries the ADM3053 signal and power isolated CAN transceiver with an integrated isolated DC-to-DC converter.
We provide a library for the CanIsolator Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for CanIsolator Click driver.
Config Object Initialization function.
void canisolator_cfg_setup ( canisolator_cfg_t *cfg );
Initialization function.
CANISOLATOR_RETVAL canisolator_init ( canisolator_t ctx, canisolator_cfg_t cfg );
Click Default Configuration function.
void canisolator_default_cfg ( canisolator_t *ctx );
Generic multi write function.
void canisolator_generic_multi_write ( canisolator_t ctx, canisolator_data_t data_buf, uart_length_t len );
Generic multi read function.
void canisolator_generic_multi_read ( canisolator_t ctx, canisolator_data_t data_buf, uart_length_t len );
Generic single read function.
canisolator_data_t canisolator_generic_single_read ( canisolator_t *ctx );
Generic single write function.
void canisolator_generic_single_write ( canisolator_t *ctx, canisolator_data_t tx_data );
This is a example which demonstrates the use of Can Isolator Click board.
The demo application is composed of two sections :
Configuring clicks and log objects.
void application_init ( void )
{
log_cfg_t log_cfg;
canisolator_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "---- Application Init ----\r\n" );
// Click initialization.
canisolator_cfg_setup( &cfg );
CANISOLATOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
canisolator_init( &canisolator, &cfg );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " CAN Isolator Click\r\n" );
log_printf( &logger, "---------------------\r\n" );
Delay_ms ( 100 );
}
Checks if new data byte has received in RX buffer ( ready for reading ) and if ready than reads one byte from RX buffer. In the second case, the application task writes message data via UART. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
canisolator_data_t tmp;
// Task implementation.
#ifdef DEMO_APP_RECEIVER
// RECEIVER - UART polling
tmp = canisolator_generic_single_read( &canisolator );
log_printf( &logger, " %c ", tmp );
#endif
#ifdef DEMO_APP_TRANSMITER
// TRANSMITER - TX each 2 sec
uint8_t cnt;
for ( cnt = 0; cnt < 9; cnt ++ )
{
canisolator_generic_single_write( &canisolator, demo_message[ cnt ] );
Delay_ms ( 100 );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.