TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141176 times)
  2. FAT32 Library (73987 times)
  3. Network Ethernet Library (58601 times)
  4. USB Device Library (48756 times)
  5. Network WiFi Library (44452 times)
  6. FT800 Library (44025 times)
  7. GSM click (30784 times)
  8. mikroSDK (29510 times)
  9. PID Library (27331 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Dual LIN Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: LIN

Downloaded: 323 times

Not followed.

License: MIT license  

The Dual LIN Click is a Click board™ based on the TLE7268SKXUMA1, a Dual LIN transceiver from Infineon.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Dual LIN Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Dual LIN Click" changes.

Do you want to report abuse regarding "Dual LIN Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Dual LIN Click

The Dual LIN Click is a Click board™ based on the TLE7268SKXUMA1, a Dual LIN transceiver from Infineon.

duallin_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the DualLin Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DualLin Click driver.

Standard key functions :

  • Config Object Initialization function.

    void duallin_cfg_setup ( duallin_cfg_t *cfg );

  • Initialization function.

    DUALLIN_RETVAL duallin_init ( duallin_t ctx, duallin_cfg_t cfg );

Example key functions :

  • Sets state of RST pin

    void duallin_bus1_status ( duallin_t *ctx, uint8_t state );

  • Sets state of CS pin

    void duallin_bus2_status ( duallin_t *ctx, uint8_t state );

  • Send command.

    void duallin_send_command ( duallin_t ctx, char command );

Examples Description

This example reads and processes data from Dual LIN clicks.

The demo application is composed of two sections :

Application Init

Initializes driver, and sets bus.


void application_init ( void )
{
    log_cfg_t log_cfg;
    duallin_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    duallin_cfg_setup( &cfg );
    DUALLIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    duallin_init( &duallin, &cfg );

    duallin_bus1_status( &duallin, DUALLIN_PIN_STATE_HIGH );
    duallin_bus2_status( &duallin, DUALLIN_PIN_STATE_LOW );
    Delay_ms ( 100 );
}

Application Task

Reads the received data.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    duallin_process( );
#endif    

#ifdef DEMO_APP_TRANSMITER
    duallin_process( );

    if ( send_data_cnt = 2 )
    {
        duallin_send_command( &duallin, TEXT_TO_SEND );
        duallin_process( );
        send_data_cnt = 0;
    }
    else
    {
        send_data_cnt++;
    }    
#endif
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DualLin

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EERAM 3v3 Click

0

EERAM 3.3V Click is a static RAM (SRAM) memory Click board™ with the unique feature - it has a backup non-volatile memory array, used to store the data from the SRAM array. Since the SRAM is not able to maintain its content after the power loss, the non-volatile EEPROM backup can be a very handy addition that can be used to preserve the data, even after the power loss event. This is a very useful feature when working with critical or sensitive applications. The memory backup procedure can be executed both automatically and manually. When it is set to work in the manual mode, the onboard capacitor will act as a power source with enough power to complete the backup cycle. The power-on backup restore mode is also available, taking only about 25ms to complete.

[Learn More]

BT Audio 3 Click

0

BT Audio 3 Click is a compact add-on board with high-performing voice and audio post-processing capability for Bluetooth audio applications. This board features the BM83, a fully certified Bluetooth v5.0 stereo audio module from Microchip. The BM83 contains an onboard Bluetooth stack and audio profiles and supports 24-bit/96 kHz high-resolution audio formats to enable high-fidelity wireless audio. An integrated Digital Signal Processor (DSP) decodes AAC and SBC codecs and executes advanced audio and voice processing such as Wide-Band (WB) speech, Acoustic Echo Cancellation (AEC), and Noise Reduction (NR). Configured in Host mode, the BM83 allows data processing via the UART interface, and in addition, comes with many additional features such as audio control buttons, onboard microphones, LED indicators, and more.

[Learn More]

Flash 2 Click

0

Flash 2 Click features a 64 Mbit Flash memory IC, manufactured by using the proprietary high-performance CMOS Super-Flash® technology, which allows the Flash 2 Click to withstand up to 100,000 write cycles, with the data retention period of 100 years, which is considerably longer than any other memory module of this type. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more.

[Learn More]