TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (386 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139928 times)
  2. FAT32 Library (72271 times)
  3. Network Ethernet Library (57455 times)
  4. USB Device Library (47768 times)
  5. Network WiFi Library (43396 times)
  6. FT800 Library (42721 times)
  7. GSM click (29985 times)
  8. mikroSDK (28505 times)
  9. PID Library (27001 times)
  10. microSD click (26407 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Altitude 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 254 times

Not followed.

License: MIT license  

Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Altitude 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Altitude 4 Click" changes.

Do you want to report abuse regarding "Altitude 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Altitude 4 Click

Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.

altitude4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : I2C type

Software Support

We provide a library for the Altitude4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Altitude4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void altitude4_cfg_setup ( altitude4_cfg_t *cfg );

  • Initialization function.

    ALTITUDE4_RETVAL altitude4_init ( altitude4_t ctx, altitude4_cfg_t cfg );

  • Click Default Configuration function.

    void altitude4_default_cfg ( altitude4_t *ctx );

Example key functions :

  • This function stores the len amount of data into the r_buf. The data is read from the address reg.

    void altitude4_generic_read ( altitude4_t ctx, uint8_t reg, uint8_t r_buf, uint8_t len );

  • This function writes the len amount of data from the w_buf to the address reg.

    void altitude4_generic_write ( altitude4_t ctx, uint8_t reg, uint8_t w_buf, uint8_t len );

  • This function acquires sensor data from the Click module and stores it in the sensor data object.

    uint8_t altitude4_read_sensor ( altitude4_t ctx, altitude4_sensor_t sens_data );

Examples Description

This example showcases how to initialize, configure and use the Altitude 4 Click module. The Click has a sensor that measures: altitude, pressure and temperature. No additional equipment or special configuration is required in order for this demo to work.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( void )
{
    log_cfg_t log_cfg;
    altitude4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    altitude4_cfg_setup( &cfg );
    ALTITUDE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    altitude4_init( &altitude4, &cfg );
    Delay_ms ( 500 );
}

Application Task

This function initializes the sensor data object through the read_sensor(...) function and then prints altitude, pressure and temperature values in the UART console. It does so every second.


void application_task ( void )
{
    altitude4_sensor_t sensor_data;

    altitude4_read_sensor( &altitude4, &sensor_data );

    log_printf( &logger, " * Altitude: %.2f m\r\n", sensor_data.altitude );
    log_printf( &logger, " * Pressure: %.2f mBar\r\n", sensor_data.pressure );
    log_printf( &logger, " * Temperature: %.2f C\r\n", sensor_data.temperature );
    log_printf( &logger, " -------------------------\r\n" );

    Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Altitude4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UART MUX 2 Click

0

UART MUX 2 Click is a compact add-on board that enables pseudo-multidrop RS232 transmission. This board features the MAX399, a precise CMOS analog multiplexer that allows four remote RS-232 transceivers to share a single UART from Maxim Integrated. It offers fast switching speeds with a transition time of less than 250ns and low on-resistance less than 100Ω while retains CMOS-logic input compatibility and fast switching. Channel selection is performed through a set of specific GPIO pins and possesses additional functionality such as the manual ON/OFF feature. This Click board™ is suitable for a wide range of applications, from industrial and instrumentation to a consumer, communications, data-acquisition systems, and many more.

[Learn More]

RTC 12 Click

0

RTC 12 Click is a compact add-on board that measures the passage of time. This board features the DS1343, a low-current SPI-configurable real-time clock (RTC) from Maxim Integrated. This timekeeping device provides an extremely low standby current permitting longer life from a backup supply source. Its clock/calendar feature provides seconds, minutes, hours, day, date, month, and year information.

[Learn More]

6DOF IMU 3 click

5

The 6 DOF IMU 3 Click is a Click board equipped with the FXOS8700CQ 6-axis sensor with integrated linear accelerometer and magnetometer.

[Learn More]