We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: Pressure
Downloaded: 232 times
Not followed.
License: MIT license
Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.
Do you want to subscribe in order to receive notifications regarding "Altitude 4 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Altitude 4 Click" changes.
Do you want to report abuse regarding "Altitude 4 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4069_altitude_4_click.zip [340.21KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.
We provide a library for the Altitude4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Altitude4 Click driver.
Config Object Initialization function.
void altitude4_cfg_setup ( altitude4_cfg_t *cfg );
Initialization function.
ALTITUDE4_RETVAL altitude4_init ( altitude4_t ctx, altitude4_cfg_t cfg );
Click Default Configuration function.
void altitude4_default_cfg ( altitude4_t *ctx );
This function stores the len amount of data into the r_buf. The data is read from the address reg.
void altitude4_generic_read ( altitude4_t ctx, uint8_t reg, uint8_t r_buf, uint8_t len );
This function writes the len amount of data from the w_buf to the address reg.
void altitude4_generic_write ( altitude4_t ctx, uint8_t reg, uint8_t w_buf, uint8_t len );
This function acquires sensor data from the Click module and stores it in the sensor data object.
uint8_t altitude4_read_sensor ( altitude4_t ctx, altitude4_sensor_t sens_data );
This example showcases how to initialize, configure and use the Altitude 4 Click module. The Click has a sensor that measures: altitude, pressure and temperature. No additional equipment or special configuration is required in order for this demo to work.
The demo application is composed of two sections :
This function initializes and configures the logger and Click modules.
void application_init ( void )
{
log_cfg_t log_cfg;
altitude4_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
altitude4_cfg_setup( &cfg );
ALTITUDE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
altitude4_init( &altitude4, &cfg );
Delay_ms ( 500 );
}
This function initializes the sensor data object through the read_sensor(...) function and then prints altitude, pressure and temperature values in the UART console. It does so every second.
void application_task ( void )
{
altitude4_sensor_t sensor_data;
altitude4_read_sensor( &altitude4, &sensor_data );
log_printf( &logger, " * Altitude: %.2f m\r\n", sensor_data.altitude );
log_printf( &logger, " * Pressure: %.2f mBar\r\n", sensor_data.pressure );
log_printf( &logger, " * Temperature: %.2f C\r\n", sensor_data.temperature );
log_printf( &logger, " -------------------------\r\n" );
Delay_1sec( );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.