TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140957 times)
  2. FAT32 Library (73512 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BATT-MON Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 199 times

Not followed.

License: MIT license  

BATT-MON Click is a very versatile, high accuracy, multiple-chemistry battery gauge for applications single-cell batteries.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BATT-MON Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MON Click" changes.

Do you want to report abuse regarding "BATT-MON Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BATT-MON Click

BATT-MON Click is a very versatile, high accuracy, multiple-chemistry battery gauge for applications single-cell batteries.

battmon_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the BattMon Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BattMon Click driver.

Standard key functions :

  • Config Object Initialization function.

    void battmon_cfg_setup ( battmon_cfg_t *cfg );

  • Initialization function.

    BATTMON_RETVAL battmon_init ( battmon_t ctx, battmon_cfg_t cfg );

  • Click Default Configuration function.

    void battmon_default_cfg ( battmon_t *ctx );

Example key functions :

  • Data Get function

    float battmon_get_data ( battmon_t *ctx, uint8_t data_addr );

  • ALM Pin Get function

    uint8_t battmon_get_alm_pin ( battmon_t *ctx );

  • Conversion Counter Reset function

    void battmon_reset_conv_cnt ( battmon_t *ctx );

Examples Description

This application is battery charger.

The demo application is composed of two sections :

Application Init

Initializes I2C serial interface, reads the part ID and performs a device configuration and alarm setting.


void application_init ( void )
{
    log_cfg_t log_cfg;
    battmon_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    battmon_cfg_setup( &cfg );
    BATTMON_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    battmon_init( &battmon, &cfg );

    Delay_ms ( 500 );

    battmon_read_bytes( &battmon, BATTMON_REG_ID, &reg_read, 1 );
    log_printf( &logger, " ** Part ID: 0x%d \r\n", (uint16_t) reg_read );

    battmon_default_cfg( &battmon );

    log_printf( &logger, "** BattMon initialization done ** \r\n" );
    log_printf( &logger, "********************************* \r\n" );
}

Application Task

Checks the conversion counter value and when conversion was done reads data calculated to the properly unit and checks the alarm status. All results will be sent to the uart terminal.


void application_task ( void )
{
    char cels_symbol[ 3 ] = { 176, 'C', 0 };
    float data_read;
    uint16_t conv_cnt;

    conv_cnt = battmon_get_data( &battmon, BATTMON_REG_COUNTER );

    if ( ( ( conv_cnt % 4 ) == 0 ) && ( conv_cnt > 0 ) )
    {
        data_read = battmon_get_data( &battmon, BATTMON_REG_SOC );
        log_printf( &logger, "** Gas Gauge Relative SOC : %.2f %% \r\n ", data_read );

        data_read = battmon_get_data( &battmon, BATTMON_REG_CURRENT );
        log_printf( &logger, "** Battery Current : %.2f mA \r\n", data_read );


        data_read = battmon_get_data( &battmon, BATTMON_REG_VOLTAGE );
        log_printf( &logger, "** Battery Voltage : %.2f mV \r\n", data_read );

        if ( ( conv_cnt % 16 ) == 0 )
        {
            data_read = battmon_get_data( &battmon, BATTMON_REG_TEMPERATURE );
            battmon_reset_conv_cnt( &battmon );
            log_printf( &logger, "** Temperature :  %.2f %s\r\n", data_read, cels_symbol );
        }

        reg_read = battmon_check_clear_alarm( &battmon );

        if ( ( reg_read & BATTMON_ALM_SOC_DET_MASK ) != BATTMON_LOG_LOW )
        {
            log_printf( &logger,  "** Low-SOC Condition! \r\n" );
        }
        if ( ( reg_read & BATTMON_ALM_VOLT_DET_MASK ) != BATTMON_LOG_LOW )
        {
            log_printf( &logger,  "** Low-Voltage Condition! \r\n" ); 
        }

        log_printf( &logger, "********************************* \r\n" );
        Delay_ms ( 1000 );
    }
    else
    {
        Delay_ms ( 200 );
    }
}

Note

Voltage and current conversion will be done after 4 seconds. Temperature conversion will be done after 16 seconds. After temperature reading the conversion counter will be cleared. Clearing the alarm while the corresponding low-voltage or low-SOC condition is still in progress does not generate another interrupt. This condition must disappear first and must be detected again before another interrupt (ALM pin driven low or alarm interrupt bits are set high) is generated for this alarm. Another alarm condition, if not yet triggered, can still generate an interrupt. Input voltage must be in the range from 2.7V to 4.5V. Maximal battery current is 5A.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BattMon

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pollution click

5

Pollution click has high sensitivity to organic gases such as methanal, benzene, alcohol, toluene, etc. The click carries the WSP2110 VOC gas sensor with the detection range of 1~50ppm. Pollution click is designed to run on 5V power supply. It communicates with the target MCU over AN and RST pin on the mikroBUS line.

[Learn More]

TMR mix-sens Click

5

The TMR mix-sens Click is an add-on board equipped with the TMR digital push-pull and analog magnetic sensors, as well as intensity of magnetic field indicator.

[Learn More]

Piezo Accel 2 50g Click

0

Piezo Accel 2 Click - 50g is a compact add-on board for precise vibration and motion monitoring in condition-based maintenance applications. This board features the 830M1-0050, a triaxial piezoelectric accelerometer from TE Connectivity, capable of detecting motion and acceleration along all three axes (X, Y, Z). The 830M1-0050 offers a ±50g range with a sensitivity of 25mV/g, providing reliable and accurate analog voltage outputs. It integrates a built-in RTD temperature sensor for simultaneous vibration and temperature monitoring, and the onboard MCP3562R 24-bit ADC converts these signals into high-resolution digital data. Communication is made through an SPI interface with additional interrupt and clock functionality for easy integration with a host MCU.

[Learn More]