TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140554 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48224 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43296 times)
  7. GSM click (30360 times)
  8. mikroSDK (28994 times)
  9. PID Library (27119 times)
  10. microSD click (26723 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BATT-MON Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 167 times

Not followed.

License: MIT license  

BATT-MON Click is a very versatile, high accuracy, multiple-chemistry battery gauge for applications single-cell batteries.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BATT-MON Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MON Click" changes.

Do you want to report abuse regarding "BATT-MON Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BATT-MON Click

BATT-MON Click is a very versatile, high accuracy, multiple-chemistry battery gauge for applications single-cell batteries.

battmon_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the BattMon Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BattMon Click driver.

Standard key functions :

  • Config Object Initialization function.

    void battmon_cfg_setup ( battmon_cfg_t *cfg );

  • Initialization function.

    BATTMON_RETVAL battmon_init ( battmon_t ctx, battmon_cfg_t cfg );

  • Click Default Configuration function.

    void battmon_default_cfg ( battmon_t *ctx );

Example key functions :

  • Data Get function

    float battmon_get_data ( battmon_t *ctx, uint8_t data_addr );

  • ALM Pin Get function

    uint8_t battmon_get_alm_pin ( battmon_t *ctx );

  • Conversion Counter Reset function

    void battmon_reset_conv_cnt ( battmon_t *ctx );

Examples Description

This application is battery charger.

The demo application is composed of two sections :

Application Init

Initializes I2C serial interface, reads the part ID and performs a device configuration and alarm setting.


void application_init ( void )
{
    log_cfg_t log_cfg;
    battmon_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    battmon_cfg_setup( &cfg );
    BATTMON_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    battmon_init( &battmon, &cfg );

    Delay_ms ( 500 );

    battmon_read_bytes( &battmon, BATTMON_REG_ID, &reg_read, 1 );
    log_printf( &logger, " ** Part ID: 0x%d \r\n", (uint16_t) reg_read );

    battmon_default_cfg( &battmon );

    log_printf( &logger, "** BattMon initialization done ** \r\n" );
    log_printf( &logger, "********************************* \r\n" );
}

Application Task

Checks the conversion counter value and when conversion was done reads data calculated to the properly unit and checks the alarm status. All results will be sent to the uart terminal.


void application_task ( void )
{
    char cels_symbol[ 3 ] = { 176, 'C', 0 };
    float data_read;
    uint16_t conv_cnt;

    conv_cnt = battmon_get_data( &battmon, BATTMON_REG_COUNTER );

    if ( ( ( conv_cnt % 4 ) == 0 ) && ( conv_cnt > 0 ) )
    {
        data_read = battmon_get_data( &battmon, BATTMON_REG_SOC );
        log_printf( &logger, "** Gas Gauge Relative SOC : %.2f %% \r\n ", data_read );

        data_read = battmon_get_data( &battmon, BATTMON_REG_CURRENT );
        log_printf( &logger, "** Battery Current : %.2f mA \r\n", data_read );


        data_read = battmon_get_data( &battmon, BATTMON_REG_VOLTAGE );
        log_printf( &logger, "** Battery Voltage : %.2f mV \r\n", data_read );

        if ( ( conv_cnt % 16 ) == 0 )
        {
            data_read = battmon_get_data( &battmon, BATTMON_REG_TEMPERATURE );
            battmon_reset_conv_cnt( &battmon );
            log_printf( &logger, "** Temperature :  %.2f %s\r\n", data_read, cels_symbol );
        }

        reg_read = battmon_check_clear_alarm( &battmon );

        if ( ( reg_read & BATTMON_ALM_SOC_DET_MASK ) != BATTMON_LOG_LOW )
        {
            log_printf( &logger,  "** Low-SOC Condition! \r\n" );
        }
        if ( ( reg_read & BATTMON_ALM_VOLT_DET_MASK ) != BATTMON_LOG_LOW )
        {
            log_printf( &logger,  "** Low-Voltage Condition! \r\n" ); 
        }

        log_printf( &logger, "********************************* \r\n" );
        Delay_ms ( 1000 );
    }
    else
    {
        Delay_ms ( 200 );
    }
}

Note

Voltage and current conversion will be done after 4 seconds. Temperature conversion will be done after 16 seconds. After temperature reading the conversion counter will be cleared. Clearing the alarm while the corresponding low-voltage or low-SOC condition is still in progress does not generate another interrupt. This condition must disappear first and must be detected again before another interrupt (ALM pin driven low or alarm interrupt bits are set high) is generated for this alarm. Another alarm condition, if not yet triggered, can still generate an interrupt. Input voltage must be in the range from 2.7V to 4.5V. Maximal battery current is 5A.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BattMon

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

NanoBeacon Click

0

NanoBeacon Click is a compact add-on board that provides a powerful and efficient Bluetooth beacon solution. This board features the IN100, an ultra-low power Bluetooth 5.3 Beacon SoC from InPlay, that sets a new standard in beacon technology. Its ultra-low power consumption, enhanced privacy mode, and three beacon modes offer seamless compatibility with no Bluetooth programming required - plug and play. Its compact design houses two types of built-in memory (4Kb OTP and 4KB SRAM), UART and I2C interfaces, and a hardware security engine.

[Learn More]

LTE IoT 14 Click

0

LTE IoT 14 Click is a compact add-on board designed for low-latency and low-throughput wireless data communication in IoT applications. This board features the SIM7090G, a multi-band LTE module from SIMCom, supporting Cat-M and Cat-NB communication modes and multi-constellation GNSS (GPS/GLONASS/Galileo/BeiDou) for global connectivity. This board features a UART interface for communication with the host MCU, a USB Type-C port for data transfer and firmware upgrades, as well as visual indicators for real-time network and power status. It also includes test points for easier debugging, dual SMA connectors for LTE and GNSS antennas, and a micro SIM card holder for flexible service provider selection.

[Learn More]

Inclinometer 2 Click

0

Inclinometer 2 Click is a compact add-on board that measures the orientation angle of an object with respect to the force of gravity. This board features the IIS2ICLX, high accuracy, and resolution two-axis inclinometer from STMicroelectronics. It allows selectable full-scale measurements in ranges of ±0.5/±1/±2/±3g in two axes with a configurable host interface that supports both SPI and I2C serial communication. The sensing element is manufactured using a dedicated micromachining process developed by STMicroelectronics to produce inertial sensors and actuators on silicon wafers.

[Learn More]