TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142138 times)
  2. FAT32 Library (75463 times)
  3. Network Ethernet Library (59576 times)
  4. USB Device Library (49581 times)
  5. Network WiFi Library (45370 times)
  6. FT800 Library (45043 times)
  7. GSM click (31487 times)
  8. mikroSDK (30591 times)
  9. microSD click (27907 times)
  10. PID Library (27641 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 455 times

Not followed.

License: MIT license  

Brushless 3 Click carries the DRV10983, a three-phase sensorless motor driver with integrated power MOSFETs. When an external power supply is applied, you can drive a brushless DC motor through the PWM pin, AN pin or I2C interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 3 Click" changes.

Do you want to report abuse regarding "Brushless 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Brushless 3 Click

Brushless 3 Click carries the DRV10983, a three-phase sensorless motor driver with integrated power MOSFETs. When an external power supply is applied, you can drive a brushless DC motor through the PWM pin, AN pin or I2C interface.

brushless3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Brushless3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Brushless3 Click driver.

Standard key functions :

  • brushless3_cfg_setup Config Object Initialization function.

    void brushless3_cfg_setup ( brushless3_cfg_t *cfg );
  • brushless3_init Initialization function.

    err_t brushless3_init ( brushless3_t *ctx, brushless3_cfg_t *cfg );
  • brushless3_default_cfg Click Default Configuration function.

    err_t brushless3_default_cfg ( brushless3_t *ctx );

Example key functions :

  • brushless3_set_speed Set speed function

    err_t brushless3_set_speed ( brushless3_t *ctx, uint16_t motor_speed_hz );
  • brushless3_get_speed Get speed function

    err_t brushless3_get_speed ( brushless3_t *ctx, float *speed );
  • brushless3_forward_direction Set the direction of rotation in the forward direction function

    void brushless3_forward_direction ( brushless3_t *ctx );

Examples Description

This Click has three-phase sensorless motor driver and with an external power supply it drives a brushless DC motor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, set default parameter value.


void application_init ( void )
{
    log_cfg_t log_cfg;
    brushless3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    brushless3_cfg_setup( &cfg );
    BRUSHLESS3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    brushless3_init( &brushless3, &cfg );

    if ( BRUSHLESS3_ERROR == brushless3_default_cfg ( &brushless3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
}

Application Task

This is an example which demonstrates the use of Brushless 3 Click board. Read and display float motor frequency value from the DRV10983 sensorless BLDC motor driver on Brushless 3 Click board. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    log_printf( &logger, "    acceleration      \r\n" );

    for ( speed = 100; speed <= BRUSHLESS3_MAX_SPEED; speed += 20 )
    {
        brushless3_set_speed( &brushless3, speed );
        brushless3_get_speed( &brushless3, &velocity );
        log_printf( &logger, " Motor frequency: %.2f Hz\r\n", velocity );
        Delay_ms ( 100 );
    }

    log_printf( &logger,  "\r\n ---------------------- \r\n" ); 
    log_printf( &logger, "    slowing down     \r\n" );

    for ( speed = BRUSHLESS3_MAX_SPEED; speed >= 50; speed -= 20 )
    {
        brushless3_set_speed( &brushless3, speed );
        brushless3_get_speed( &brushless3, &velocity );
        log_printf( &logger, " Motor frequency: %.2f Hz\r\n", velocity );
        Delay_ms ( 100 );
    }

    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

PROFET 10A Click

0

PROFET Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS7008-1EPA, a single-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies. This switch has a driving capability suitable for 10A loads featuring a ReverSave™, which causes the power transistor to switch on in case of reverse polarity.

[Learn More]

FT Click

0

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS™ socket. Leveraging FT, the most reliable and easiest-to-scale wired communications media, FT Click lets you network sensors and devices to create IoT solutions for automation and control networks that are easier to develop, integrate and install. This Click board™ supports full communication stacks for LON® and BACnet FT, as well as FTMQ (MQTT like messaging format) on board to simplify integration of BACnet, LON or custom IoT networks over twisted pair wire. FT Click is ideal for markets including smart buildings, cities, machines, agriculture, manufacturing, transportation and many more where wireless communications do not provide the required reliability and scale.

[Learn More]

LTE IoT 7 Click

0

LTE IoT 7 Click is an add-on board representing a secure-cloud multi-band solution designed for IoT applications. This board features the SARA-R422M8S, a multi-band LTE-M/NB-IoT/EGPRS multi-mode solution with integrated high-performance standard precision M8 GNSS receiver for global position acquisition from u-blox. Equipped with familiar AT commands set over the UART interface, USB interface, and Network and Status indicators, it also provides over-the-air firmware updates, end-to-end trusted domain security, and u-Blox’s leading GNSS technology.

[Learn More]