TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141137 times)
  2. FAT32 Library (73922 times)
  3. Network Ethernet Library (58557 times)
  4. USB Device Library (48747 times)
  5. Network WiFi Library (44409 times)
  6. FT800 Library (44003 times)
  7. GSM click (30722 times)
  8. mikroSDK (29497 times)
  9. PID Library (27308 times)
  10. microSD click (27135 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 315 times

Not followed.

License: MIT license  

The Buck 14 Click is a Click board™ based around the BMR4613001/001, a PoL regulator from Flex. It's high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4.5 to 14V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 14 Click" changes.

Do you want to report abuse regarding "Buck 14 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 14 Click

The Buck 14 Click is a Click board™ based around the BMR4613001/001, a PoL regulator from Flex. It's high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4.5 to 14V.

buck14_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Buck14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck14 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck14_cfg_setup ( buck14_cfg_t *cfg );

  • Initialization function.

    BUCK14_RETVAL buck14_init ( buck14_t ctx, buck14_cfg_t cfg );

  • Click Default Configuration function.

    void buck14_default_cfg ( buck14_t *ctx );

Example key functions :

  • This function sets state of the power control pin on cs.

    void buck14_power_ctrl ( buck14_t *ctx, uint8_t state );

  • This function gets manufacturer id.

    uint8_t buck14_salert ( buck14_t *ctx );

  • This function sets output V.

    uint8_t buc14_write_vout ( buck14_t *ctx, float vout );

Examples Description

This app enables usage of high-efficiency step-down converter.

The demo application is composed of two sections :

Application Init

Configure device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck14_cfg_t cfg;
    uint8_t write_data;
    uint8_t status_data;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck14_cfg_setup( &cfg );
    BUCK14_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck14_init( &buck14, &cfg );

    buck14_reset( &buck14 );

    write_data  = BUCK14_CTRL_ENABLE_NO_MARGIN;
    buck14_generic_write( &buck14, BUCK14_CMD_OPERATION, write_data , 1 );
    Delay_ms ( 300 );

    status_data = buck14_check_mfr_id(  &buck14 );
    error_handler( status_data );
    log_printf( &logger, "-Device ID OK!\r\n" );

    buck14_power_ctrl( &buck14, BUCK14_PIN_STATE_HIGH );

    buck14_default_cfg( &buck14 );
    log_printf( &logger, " ***** App init ***** \r\n" );
    log_printf( &logger, "----------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

Sends 4 different commands for VOUT in span of 8sec


void application_task ( void )
{
    uint8_t status_data;
    float vout_value;

    vout_value = 1.2;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 3.7;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data( &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 2.5;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 4.5;
    status_data = buc14_write_vout(  &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "```````````````\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

Note

When you send data you should send LSB first. Device input V should be beetween 4.5 - 14 V. Device output V could be from 0.5 - 5 V deepending from limits you set currently it is set to 1V.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Waveform 4 Click

0

Waveform 4 Click is a compact add-on board that represents a high-performance signal generator. This board features the AD9106, a quad-channel, 12-bit, 180MSPS waveform generator, integrating on-chip static random access memory (SRAM) and direct digital synthesis (DDS) for complex waveform generation from Analog Devices. The DDS is up to a 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution.

[Learn More]

Air Quality click

5

This example demonstrates usage of the Air Quality click board in mikroBUS form factor. Air Quality click is suitable for detecting poisonous gases that impact air quality in homes and offices. LCD shows detected concentration in PPM value.

[Learn More]

Thermo 11 click

5

Thermo 11 Click is a Click board equipped with the sensor IC, which can digitize temperature measurements between -55°C and +150°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]