TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59316 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45107 times)
  6. FT800 Library (44675 times)
  7. GSM click (31287 times)
  8. mikroSDK (30214 times)
  9. microSD click (27663 times)
  10. PID Library (27563 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MUX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 269 times

Not followed.

License: MIT license  

MUX Click is a Click board™ that switches one of the four differential inputs to one differential output. It employs the MUX509, a modern CMOS analog multiplexing integrated circuit, produced by Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MUX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MUX Click" changes.

Do you want to report abuse regarding "MUX Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MUX Click

MUX Click is a Click board™ that switches one of the four differential inputs to one differential output. It employs the MUX509, a modern CMOS analog multiplexing integrated circuit, produced by Texas Instruments.

mux_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Nov 2019.
  • Type : GPIO type

Software Support

We provide a library for the Mux Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mux Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mux_cfg_setup ( mux_cfg_t *cfg );

  • Initialization function.

    MUX_RETVAL mux_init ( mux_t ctx, mux_cfg_t cfg );

  • Click Default Configuration function.

    void mux_default_cfg ( mux_t *ctx );

Example key functions :

  • Seelect active MUX channel

    void mux_active_mux_channel ( mux_t *ctx, uint8_t sel_ch );

  • Disable MUX device function.

    void mux_device_disable ( mux_t *ctx );

  • Enable MUX device function.

    void mux_device_enable ( mux_t *ctx );

Examples Description

Sets the current active channel. Changes the channel every 5 sec.

The demo application is composed of two sections :

Application Init

Initializes GPIO module and sets RST, CS and PWM pins as OUTPUT.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mux_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    mux_cfg_setup( &cfg );
    MUX_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mux_init( &mux, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, "        MUX Click\r\n" );
    log_printf( &logger, "------------------------\r\n" );

    mux_device_enable( &mux );
    log_printf( &logger, "    Enable MUX device\r\n" );
    log_printf( &logger, "------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

Changes currently active channel every 5 sec.


void application_task ( void )
{
    uint16_t n_cnt;

    for ( n_cnt = MUX_CHANNEL_1A_AND_1B; n_cnt < MUX_CHANNEL_END; n_cnt++ )
    {
        log_printf( &logger, "      CHANNEL  S%u\r\n", n_cnt );
        log_printf( &logger, "------------------------\r\n" );

        mux_active_mux_channel( &mux, n_cnt );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}  

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mux

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RTC 10 click

5

RTC 10 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. It features the DS3231M, a low-cost, extremely accurate, I2C realtime clock (RTC) from Maxim Integrated.

[Learn More]

Stepper 24 Click

0

Stepper 24 Click is a compact add-on board designed to drive small stepping motors in consumer electronics and industrial equipment applications. This board features the TB67S589FTG, a BiCD constant-current 2-phase bipolar stepping motor driver IC from Toshiba Semiconductor. Key features include a PWM chopper-type 2-phase bipolar drive system, high withstand voltage of up to 34V operating, and a maximum operating current of 2.7A per phase. The board also integrates safety mechanisms such as over-temperature, over-current, and low-supply voltage detection. Additional control is provided by the PCA9555A port expander via I2C, enabling functions like decay and torque modes, step resolution settings, and many more.

[Learn More]

GNSS 14 Click

0

GNSS 14 Click is a compact add-on board that provides fast positioning capability to your application. This board features the MIA-M10Q, a standard precision GNSS module from u-blox. It has an exceptional sensitivity and acquisition time for all L1 GNSS signals, attributed to its integrated M10 standard precision low-power platform. The M10 platform supports concurrent reception of four GNSS (GPS, GLONASS, Galileo, and BeiDou). The high number of visible satellites enables the receiver to select the best signals. This maximizes position availability, particularly under challenging conditions like deep urban canyons.

[Learn More]