TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141815 times)
  2. FAT32 Library (74951 times)
  3. Network Ethernet Library (59306 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45102 times)
  6. FT800 Library (44668 times)
  7. GSM click (31280 times)
  8. mikroSDK (30209 times)
  9. microSD click (27656 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LightRanger Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 421 times

Not followed.

License: MIT license  

LightRanger Click is a proximity sensor carrying STs VL6180X IC. This chip is based on STs patented FlightSense technology...

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LightRanger Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LightRanger Click" changes.

Do you want to report abuse regarding "LightRanger Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LightRanger Click

LightRanger Click is a proximity sensor carrying ST�s VL6180X IC. This chip is based on STs patented FlightSense technology...

lightranger_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the LightRanger Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LightRanger Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lightranger_cfg_setup ( lightranger_cfg_t *cfg );

  • Initialization function.

    LIGHTRANGER_RETVAL lightranger_init ( lightranger_t ctx, lightranger_cfg_t cfg );

Example key functions :

  • This function writes a byte of data to given address.

    void lightranger_write_byte ( lightranger_t* ctx, uint16_t reg_addr, uint8_t write_command );

  • This function reads register and calculates the light level in lux.

    float lightranger_get_ambiant_light ( lightranger_t* ctx, uint16_t als_gain_check );

  • This function reads range result from register.

    uint16_t lightranger_get_distance ( lightranger_t* ctx );

Examples Description

This example collects data from the sensor and logs it to the terminal.

The demo application is composed of two sections :

Application Init

Initialization driver for sensor Vl6180X and stars logging to terminal.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lightranger_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lightranger_cfg_setup( &cfg );
    LIGHTRANGER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lightranger_init( &lightranger, &cfg );

    lightranger_default_cfg( &lightranger );
    Delay_ms ( 1000 );
}

Application Task

Measures and calculates ambient light intensity and distance from sensor, when the distance is changed log is updated, results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for approximately every 1 sec when the data value changes.


void application_task ( void )
{
    uint8_t range_value;
    float lux_value;

    lightranger_start_single_shot_range_mode( &lightranger );

    lightranger_poll_range( &lightranger );
    lightranger_interrupts_clear( &lightranger );

    range_value = lightranger_get_distance( &lightranger );
    log_printf( &logger, "Proximity : %u mm\r\n", ( uint16_t ) range_value );

    lux_value = lightranger_get_ambiant_light( &lightranger, LIGHTRANGER_CMD_GAIN_1X );
    log_printf( &logger, "Ambient Light: %.2f lux\r\n", lux_value );

    log_printf( &logger, "*******************************************\r\n" );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LightRanger

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

V to Hz 3 Click

0

V to Hz 3 Click is a compact add-on board that converts an analog voltage input signal into a specific frequency pulse wave signal. This board features the AD7740, an ultrasmall synchronous voltage-to-frequency converter from Analog Devices. The AD7740 has a linear response, so applying a voltage from 3V up to 5V on its VIN terminal will generate the pulse with a frequency linearly proportional to the input voltage. It contains an integrated 2.5V bandgap reference defining the span of the VFC and can be overdriven using an external reference. The full-scale output frequency is synchronous with the input clock signal provided by the LTC6903 programmable oscillator, with a maximum input frequency of 1MHz. Based on the analog input value, the output frequency goes from 10% to 90% of the input frequency.

[Learn More]

DIGI IN Click

0

DIGI IN Click is a compact add-board that converts industrial inputs into serialized SPI-compatible output. This board features the MAX22199, an octal industrial digital input from Analog Devices. It stands out for its compliance with the IEC 61131-2 standard, ensuring reliability and efficiency.

[Learn More]

STSPIN233 click

5

STSPIN233 click is a complete solution for a 3-phase integrated motor driver, based on the STSPIN233, Low voltage 3-phase integrated motor driver. It is optimized for battery-powered, low voltage motor driving applications, featuring the lowest standby current available on the market (max 80 nA).

[Learn More]