TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57643 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Hall Current 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Current sensor

Downloaded: 202 times

Not followed.

License: MIT license  

Hall current 2 Click is a very accurate current measurement Click board™, which relies on the Hall effect.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Hall Current 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Hall Current 2 Click" changes.

Do you want to report abuse regarding "Hall Current 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Hall Current 2 Click

Hall current 2 Click is a very accurate current measurement Click board™, which relies on the Hall effect.

hallcurrent2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the HallCurrent2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HallCurrent2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hallcurrent2_cfg_setup ( hallcurrent2_cfg_t *cfg );

  • Initialization function.

    HALLCURRENT2_RETVAL hallcurrent2_init ( hallcurrent2_t ctx, hallcurrent2_cfg_t cfg );

  • Click Default Configuration function.

    void hallcurrent2_default_cfg ( hallcurrent2_t *ctx );

Example key functions :

  • This function reads data from the desired register.

    void hallcurrent2_generic_read ( hallcurrent2_t *ctx );

  • This function changes reset chip states to reset the chip.

    void hallcurrent2_reset( hallcurrent2_t *ctx );

  • Reads current's value in mV.

    int16_t hallcurrent2_get_current( hallcurrent2_t *ctx );

Examples Description

This application very accurately measures current using Hall effect.

The demo application is composed of two sections :

Application Init

Initializes Driver init and reset chip


void application_init ( void )
{
    log_cfg_t log_cfg;
    hallcurrent2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    hallcurrent2_cfg_setup( &cfg );
    HALLCURRENT2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hallcurrent2_init( &hallcurrent2, &cfg );

    hallcurrent2_reset( &hallcurrent2 );
}

Application Task

Reads current and logs on usbuart every 1 second.

void application_task ( void )
{
    int16_t current_data;

    current_data = hallcurrent2_get_current( &hallcurrent2 );
    log_printf( &logger, "--- Current : %d mA\r\n", current_data );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HallCurrent2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UV 3 Click

0

UV 3 Click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The Click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 Click runs on either 3.3V or 5V power supply.

[Learn More]

Compass 3 click

5

Compass 3 Click features MMC5883MA, a complete 3-axis magnetic sensor with on-chip signal processing and integrated I2C bus suitable for use in various applications.

[Learn More]

CO2 Click

0

CO2 Click is a compact add-on board that contains Sensirion miniature CO2 sensor. This board features the STC31, a gas concentration sensor designed for high-volume applications. The STC31 utilizes a revolutionized thermal conductivity measurement principle, which results in superior repeatability and long-term stability. The outstanding performance of these sensors is based on Sensirion’s patented CMOSens® sensor technology, which combines the sensor element, signal processing, and digital calibration on a small CMOS chip. It features a digital I2C interface, which makes it easy to connect directly to MCU. This Click board™ represents an ideal choice for health, environmental, industrial, residential monitoring of high CO2 concentrations and applications where reliability is crucial.

[Learn More]