TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141905 times)
  2. FAT32 Library (75041 times)
  3. Network Ethernet Library (59345 times)
  4. USB Device Library (49348 times)
  5. Network WiFi Library (45157 times)
  6. FT800 Library (44701 times)
  7. GSM click (31300 times)
  8. mikroSDK (30264 times)
  9. microSD click (27685 times)
  10. PID Library (27576 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto Encoder Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 375 times

Not followed.

License: MIT license  

Opto Encoder Click is a linear incremental optical sensor/encoder Click, which can be used for the movement or rotation encoding.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto Encoder Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto Encoder Click" changes.

Do you want to report abuse regarding "Opto Encoder Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Opto Encoder Click

Opto Encoder Click is a linear incremental optical sensor/encoder Click, which can be used for the movement or rotation encoding.

optoencoder_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the OptoEncoder Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for OptoEncoder Click driver.

Standard key functions :

  • Config Object Initialization function.

    void optoencoder_cfg_setup ( optoencoder_cfg_t *cfg );

  • Initialization function.

    OPTOENCODER_RETVAL optoencoder_init ( optoencoder_t ctx, optoencoder_cfg_t cfg );

Example key functions :

  • Function for reading O1 state

    uint8_t optoencoder_getO1 ( optoencoder_t *ctx );

  • Initialization function

    void optoencoder_init_dev ( optoencoder_t *ctx );

  • Function for reading the position of the encoder

    int16_t optoencoder_get_position ( optoencoder_t *ctx );

Examples Description

This application is used to encode motion or rotation.

The demo application is composed of two sections :

Application Init

Initializes driver and opto encoder.


void application_init ( void )
{
    log_cfg_t log_cfg;
    optoencoder_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    optoencoder_cfg_setup( &cfg );
    OPTOENCODER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    optoencoder_init( &optoencoder, &cfg );

    optoencoder_init_dev( &optoencoder );
}

Application Task

Depending on the direction of the movement it increments/decrements the step counter.


void application_task ( )
{
    int16_t new_step;
    new_step = optoencoder_get_position( &optoencoder );
    if ( old_step != new_step)
    {
        log_printf( &logger, "Step: %d \r\n", new_step );
        old_step = new_step;
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.OptoEncoder

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Step Down 6 Click

0

Step Down 6 Click is a compact add-on board that converts higher voltages into lower ones. This board features the MPM54304, a quad-output power module from Monolithic Power Systems (MPS). It is a quad-output, DC/DC step-down power module with up to 3A per output on channels 1 and 2 and up to 2A per channels 3 and 4, providing continuous current on all four channels.

[Learn More]

2x2 key Click

0

2x2 Key Click has a 4 button keypad and allows multiple key presses.

[Learn More]

Accel 4 Click

0

Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.

[Learn More]