TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59317 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30215 times)
  9. microSD click (27664 times)
  10. PID Library (27564 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Audio Xover Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Signal processing

Downloaded: 373 times

Not followed.

License: MIT license  

Audio Xover Click is an analog active crossover solution for two-way loudspeakers. The primary purpose of the crossover circuit in a loudspeaker is to split an incoming audio signal into frequency bands that are passed to the speaker or “driver” best suited.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Audio Xover Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Audio Xover Click" changes.

Do you want to report abuse regarding "Audio Xover Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Audio Xover Click

Audio Xover Click is an analog active crossover solution for two-way loudspeakers. The primary purpose of the crossover circuit in a loudspeaker is to split an incoming audio signal into frequency bands that are passed to the speaker or “driver” best suited.

audio_xover_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : GPIO type

Software Support

We provide a library for the AudioXover Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AudioXover Click driver.

Standard key functions :

  • Config Object Initialization function.

    void audioxover_cfg_setup ( audioxover_cfg_t *cfg );

  • Initialization function.

    AUDIOXOVER_RETVAL audioxover_init ( audioxover_t ctx, audioxover_cfg_t cfg );

Example key functions :

  • Device power on function.

    void audioxover_power_on ( audioxover_t *ctx );

  • Device shut down function.

    void audioxover_shut_down ( audioxover_t *ctx );

Examples Description

This function initializes the driver and makes an initial log.

The demo application is composed of two sections :

Application Init

This function initializes and configures the Click and logger modules.


void application_init ( void )
{
    log_cfg_t log_cfg;
    audioxover_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    audioxover_cfg_setup( &cfg );
    AUDIOXOVER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    audioxover_init( &audioxover, &cfg );
}

Application Task

This function enables and disables the Click board every 10 seconds, and logs an appropriate message on the USB UART.


void application_task ( void )
{
    log_printf( &logger, " * Switch: ON *\r\n" );
    audioxover_power_on ( &audioxover );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " * Switch: OFF *\r\n" );
    audioxover_shut_down ( &audioxover );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AudioXover

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GainAMP 2 click

0

GainAMP 2 click is a 6-channel programmable gain amplifier, used to amplify signals on any of the 6 non-inverting input channels up to 32x, in eight discrete steps. 

[Learn More]

H-Bridge click

5

H-Bridge click is a high-efficiency dual H-bridge driver Click board, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board is an ideal solution for driving smaller bipolar stepper motors.

[Learn More]

Driver click

5

Driver click features an IC with seven integrated high-current sink drivers drivers, which can be used to drive a wide range of loads via simple parallel interface.

[Learn More]