TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141964 times)
  2. FAT32 Library (75151 times)
  3. Network Ethernet Library (59420 times)
  4. USB Device Library (49414 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44816 times)
  7. GSM click (31380 times)
  8. mikroSDK (30368 times)
  9. microSD click (27741 times)
  10. PID Library (27595 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CAN FD 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: CAN

Downloaded: 338 times

Not followed.

License: MIT license  

The CAN FD 4 Click is a Click board™ that features the NCV7344D10R2G, a Controller Area Network (CAN) transceiver, from ON Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CAN FD 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CAN FD 4 Click" changes.

Do you want to report abuse regarding "CAN FD 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


CAN FD4 Click

The CAN FD 4 Click is a Click board™ that features the NCV7344D10R2G, a Controller Area Network (CAN) transceiver, from ON Semiconductor.

canfd4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : UART type

Software Support

We provide a library for the CanFd4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for CanFd4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void canfd4_cfg_setup ( canfd4_cfg_t *cfg );

  • Initialization function.

    CANFD4_RETVAL canfd4_init ( canfd4_t ctx, canfd4_cfg_t cfg );

Example key functions :

  • Generic write function.

    void canfd4_generic_write ( canfd4_t ctx, char data_buf, uint16_t len );

  • Set mode function.

    void canfd4_set_dev_mode ( canfd4_t *ctx, uint8_t mode );

  • Generic read function.

    int32_t canfd4_generic_read ( canfd4_t ctx, char data_buf, uint16_t max_len );

Examples Description

This example reads and processes data from CAN FD 4 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    canfd4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    canfd4_cfg_setup( &cfg );
    CANFD4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    canfd4_init( &canfd4, &cfg );

    canfd4_set_dev_mode ( &canfd4, CANFD4_NORMAL_MODE );
    Delay_ms ( 100 );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    canfd4_process( );
#endif
#ifdef DEMO_APP_TRANSMITTER
    canfd4_generic_write( &canfd4, TEXT_TO_SEND, 8 );
    log_info( &logger, "--- The message is sent ---" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif 
}

The full application code, and ready to use projects can be installed directly from compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CanFd4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Multi Stepper TB62269 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB62269FTG, PWM method CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows from full-step up to 1/32 steps resolution for less motor noise and smoother control. It has a wide operating voltage range of 10V to 38V with an output current capacity of 1.2A in addition to several built-in error detection circuits.

[Learn More]

Stepper 16 Click

0

Stepper 16 Click is a compact add-on board that contains a micro-stepping stepper motor driver. This board features the NCV70517, an SPI and I/O configurable motor driver for bipolar stepper motors from ON Semiconductor.

[Learn More]

RTC 20 Click

0

RTC 20 Click is a compact add-on board that measures the passage of real-time. This board features the AB0805, an I2C-configurable real-time clock with a highly sophisticated feature set from Abracon LLC. The AB0805 provides information like seconds, minutes, hours, days, months, years, and dates based on a 32.768kHz quartz crystal through an I2C serial interface to transmit time and calendar data to the MCU. It also has automatic leap year compensation, low power consumption, and full RTC functions such as battery backup, programmable counters, and alarms for timer and watchdog functions.

[Learn More]