TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141685 times)
  2. FAT32 Library (74754 times)
  3. Network Ethernet Library (59207 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44522 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CAN FD 5 click

Rating:

5

Author: MIKROE

Last Updated: 2020-09-23

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: CAN

Downloaded: 3665 times

Not followed.

License: MIT license  

CAN FD 5 Click is a compact add-on board that contains a high-speed CAN transceiver that supports both CAN and CAN FD protocol types.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CAN FD 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CAN FD 5 click" changes.

Do you want to report abuse regarding "CAN FD 5 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

CAN FD 5 Click

CAN FD 5 Click

Native view of the CAN FD 5 Click board.

View full image
CAN FD 5 Click

CAN FD 5 Click

Front and back view of the CAN FD 5 Click board.

View full image

Library Description

The library covers all the necessary functions to control CAN FD 5 click board. Library performs a standard UART communication.

Key functions:

  • void canfd5_write_byte ( uint8_t input ) - Write Single Byte.
  • void canfd5_set_normal_operating_mode ( void ) - Set normal operating mode function.
  • void canfd5_set_operating_mode ( uint8_t op_mode ) - Set operating mode function.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes UART, sets CS and PWM pins as output and INT pin as input.
  • Application Initialization - Initialization driver enables - UART, performs an normal operating mode, also write log.
  • Application Task - (code snippet) This is an example that demonstrates the use of the CAN FD 5 click board. This application task writes message data via UART every 3 seconds. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( )
{
    mikrobus_logWrite( "----------------------", _LOG_LINE );
    mikrobus_logWrite( "", _LOG_LINE );
    
    canfd5_write_data( &demo_message_data[ 0 ] );
    
    mikrobus_logWrite( "  TX Data:  ", _LOG_TEXT );
    mikrobus_logWrite( demo_message_data, _LOG_LINE );
    Delay_ms( 3000 );
}

Other mikroE Libraries used in the example:

  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

LR 2 Click

0

LR 2 Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2903, RF technology-based SRD transceiver, which operates at a frequency of 915MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2903 module is fully compliant with the United States (FCC) and Canada (IC) regulations combined with the advanced and straightforward command interface allowing easy integration into the final application.

[Learn More]

LED Driver 4 Click

0

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

[Learn More]

nRF S click - Example

6

This is a sample program which demonstrates the use of nRF S click. Programmer uses RF module for communication between two development systems. Each module can be used as transmitter and receiver.

[Learn More]