We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.10
mikroSDK Library: 2.0.0.0
Category: Clock generator
Downloaded: 138 times
Not followed.
License: MIT license
Clock Gen 3 Click features a low power self-contained digital frequency source providing a precision frequency from 1kHz to 68MHz, set through a serial port.
Do you want to subscribe in order to receive notifications regarding "Clock Gen 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Clock Gen 3 Click" changes.
Do you want to report abuse regarding "Clock Gen 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4355_clock_gen_3_clic.zip [251.76KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Clock Gen 3 Click features a low power self-contained digital frequency source providing a precision frequency from 1kHz to 68MHz, set through a serial port.
We provide a library for the ClockGen3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for ClockGen3 Click driver.
clockgen3_cfg_setup
Config Object Initialization function.
void clockgen3_cfg_setup ( clockgen3_cfg_t *cfg );
clockgen3_init
Initialization function.
err_t clockgen3_init ( clockgen3_t *ctx, clockgen3_cfg_t *cfg );
clockgen3_set_cs_pin
Sets CS pin state
void clockgen3_set_cs_pin ( clockgen3_t *ctx, uint8_t state );
clockgen3_generic_write
Generic write function.
void clockgen3_generic_write ( clockgen3_t *ctx, uint8_t *data_buf, uint8_t len );
clockgen3_set_freq
Sets Frequency
void clockgen3_set_freq ( clockgen3_t *ctx, float freq );
This example demonstrates the use of Clock Gen 3 Click board.
The demo application is composed of two sections :
Initializes the driver and configures the Click board.
void application_init ( void )
{
log_cfg_t log_cfg;
clockgen3_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
clockgen3_cfg_setup( &cfg );
CLOCKGEN3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
clockgen3_init( &clockgen3, &cfg );
clockgen3_config( &clockgen3, CLOCKGEN3_CFG_ON_CLK_180 );
Delay_ms ( 500 );
}
Sets different frequencies every 3 seconds and displays the set frequency on the USB UART.
void application_task ( void )
{
log_printf( &logger, ">> Set Freq = 12.000 MHz \r\n" );
clockgen3_set_freq( &clockgen3, 12000.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, ">> Set Freq = 8.000 MHz \r\n" );
clockgen3_set_freq( &clockgen3, 8000.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, ">> Set Freq = 5.500 MHz \r\n" );
clockgen3_set_freq( &clockgen3, 5500.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, ">> Set Freq = 2.700 MHz \r\n" );
clockgen3_set_freq( &clockgen3, 2700.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, ">> Set Freq = 800 KHz \r\n" );
clockgen3_set_freq( &clockgen3, 800.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, ">> Set Freq = 200 KHz \r\n" );
clockgen3_set_freq( &clockgen3, 200.0 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------- \r\n" );
}
The full application code, and ready to use projects can be installed directly from compilers IDE(recommended) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.