TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ECG 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 190 times

Not followed.

License: MIT license  

ECG 4 Click is a complete solution for the development of ECG and Heart-Rate (HR) applications, based on the BMD101, a specialized bio-signal sensing System-on-Chip (SoC).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ECG 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ECG 4 Click" changes.

Do you want to report abuse regarding "ECG 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ECG 4 Click

ECG 4 Click is a complete solution for the development of ECG and Heart-Rate (HR) applications, based on the BMD101, a specialized bio-signal sensing System-on-Chip (SoC).

ecg4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : UART type

Software Support

We provide a library for the Ecg4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ecg4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ecg4_cfg_setup ( ecg4_cfg_t *cfg );

  • Initialization function.

    ECG4_RETVAL ecg4_init ( ecg4_t ctx, ecg4_cfg_t cfg );

  • Reset module function.

    void ecg4_module_reset ( ecg4_t *ctx );

Example key functions :

  • Function performs the uart interrupt routine, reads a data from uart rx buffer and makes a response from the BMD101 device.

    void ecg4_uart_isr( ecg4_t *ctx, uint8_t rx_dat );

  • Function powers up or down control of LDO (Low Drop Out).

    void ecg4_enable_ldo_ctrl ( ecg4_t *ctx, uint8_t state );

  • Generic read function.

    int32_t ecg4_generic_read ( ecg4_t ctx, char data_buf, uint16_t max_len );

Examples Description

This example reads and processes data from ECG 4 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver, sets the driver handler and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ecg4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ecg4_cfg_setup( &cfg );
    ECG4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ecg4_init( &ecg4, &cfg );

    ecg4.driver_hdl = make_response;
    Delay_ms ( 500 );

    ecg4_module_reset ( &ecg4 );
    ecg4_enable_ldo_ctrl ( &ecg4, ECG4_ENABLE_LDO_CTRL );

    Delay_ms ( 1000 );
}

Application Task

Reads the received data and parses it on the USB UART if the response buffer is ready.


void application_task ( void )
{
    ecg4_process(  );
    if ( ecg4_responseReady( &ecg4 ) )
    {
        process_response( );
    }
}  

Note

Use the Serial Plot application for data plotting.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ecg4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE IoT 14 Click

0

LTE IoT 14 Click is a compact add-on board designed for low-latency and low-throughput wireless data communication in IoT applications. This board features the SIM7090G, a multi-band LTE module from SIMCom, supporting Cat-M and Cat-NB communication modes and multi-constellation GNSS (GPS/GLONASS/Galileo/BeiDou) for global connectivity. This board features a UART interface for communication with the host MCU, a USB Type-C port for data transfer and firmware upgrades, as well as visual indicators for real-time network and power status. It also includes test points for easier debugging, dual SMA connectors for LTE and GNSS antennas, and a micro SIM card holder for flexible service provider selection.

[Learn More]

DIGI POT 2 Click

0

DIGI POT 2 Click is a mikroBUS™ add-on board with a single channel digital potentiometer TPL0501 with 256 wiper positions.

[Learn More]

IR Beacon click

2

IR Beacon click is a mikroBUS add-on board with an array of nine high speed infrared emitting diodes. It functions as a beacon device, transmitting infrared rays in a wide angle, which can be detected by nearby infrared receivers (such as the one on IR click).

[Learn More]