TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142072 times)
  2. FAT32 Library (75298 times)
  3. Network Ethernet Library (59496 times)
  4. USB Device Library (49524 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44918 times)
  7. GSM click (31434 times)
  8. mikroSDK (30452 times)
  9. microSD click (27802 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

iqRF 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 345 times

Not followed.

License: MIT license  

IQRF Click carries the DCTR-76DA RF transceiver, operating in the 868/916 MHz frequency.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "iqRF 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "iqRF 2 Click" changes.

Do you want to report abuse regarding "iqRF 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


iqRF 2 Click

IQRF Click carries the DCTR-76DA RF transceiver, operating in the 868/916 MHz frequency.

iqrf2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : UART type

Software Support

We provide a library for the iqrf2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for iqrf2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void iqrf2_cfg_setup ( iqrf2_cfg_t *cfg );

  • Initialization function.

    IQRF2_RETVAL iqrf2_init ( iqrf2_t ctx, iqrf2_cfg_t cfg );

Example key functions :

  • Generic read function

    int32_t iqrf2_generic_read ( iqrf2_t ctx, char data_buf, uint16_t max_len );

  • Generic write function

    void iqrf2_generic_write ( iqrf2_t ctx, char data_buf, uint16_t len );

Examples Description

This example reads and processes data from iqRF 2 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    iqrf2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    iqrf2_cfg_setup( &cfg );
    IQRF2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    iqrf2_init( &iqrf2, &cfg );
    Delay_ms ( 100 );

#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- Receiver mode ----" );
#endif    
#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- Transmitter mode ----" );
#endif   
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    iqrf2_process( );
#endif    

#ifdef DEMO_APP_TRANSMITTER
    iqrf2_generic_write( &iqrf2, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_info( &logger, "---- Data sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif   
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.iqrf2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Expand 12 Click

0

Expand 12 Click is a compact add-on board that contains a multi-port I/O expander. This board features the MAX7300, a general-purpose I/O expander providing remote I/O expansion for most MCU’s families from Maxim Integrated, now part of Analog Devices. The MAX7300 comes in a 28-port configuration and allows easy addition of I/O through a standard I2C serial interface. Each port is user-configurable to either a logic input or logic output, capable of sinking 10mA and sourcing 4.5mA.

[Learn More]

Spectral 3 click

5

Spectral 3 click is a multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate near-IR (NIR) sensing. The sensor on the Spectral 3 click provides multi-spectral sensing in the NIR wavelengths from approximately 610nm to 860nm with the full width at half maximum (FWHM) of 20nm.

[Learn More]

Magneto 12 Click

0

Magneto 12 Click is a compact add-on board that contains an accurate and reliable magnetic sensing device. This board features the A31315, a magnetic position sensor designed for on- and off-axis rotary and linear stroke position measurement from Allegro Microsystems. This sensor integrates vertical and planar Hall-effect elements with precision temperature-compensating circuitry to detect two out of three magnetic field components (X and Y). Using configurable signal processing (the user is allowed to process the output signal in analog or digital form), linearization and angle calculation allows the A31315 to accurately resolve the absolute rotary (full 360° and short-stroke <360°) or linear position of a moving magnetic target.

[Learn More]