TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141096 times)
  2. FAT32 Library (73877 times)
  3. Network Ethernet Library (58537 times)
  4. USB Device Library (48722 times)
  5. Network WiFi Library (44368 times)
  6. FT800 Library (43966 times)
  7. GSM click (30715 times)
  8. mikroSDK (29470 times)
  9. PID Library (27280 times)
  10. microSD click (27090 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MR Angle Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 222 times

Not followed.

License: MIT license  

MR Angle Click is a compact add-on board that contains a magnetoresistive sensor with an integrated amplifier. This board features the KMZ60, a high precision sensor for magnetic angle measurement with single-ended cosine and sine outputs from NXP Semiconductors. The MR sensor element comes with two Wheatstone bridges for cosine and sine signals, supports functions for control circuit and signal amplification, and enables angular measurements with high accuracy by an excellent linearity and temperature drift behavior. The KMZ60 is fully automotive qualified as well as applicable for industrial and consumer applications. This Click board™ is suitable for rotor position detection for BLDC motors and Electronic Power Steering (EPS) applications, steering angle measurement, window wiper position detection, and general contactless angular measurement (e.g., throttle valves or actuators).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MR Angle Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MR Angle Click" changes.

Do you want to report abuse regarding "MR Angle Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MR Angle Click

MR Angle Click is a compact add-on board that contains a magnetoresistive sensor with an integrated amplifier. This board features the KMZ60, a high precision sensor for magnetic angle measurement with single-ended cosine and sine outputs from NXP Semiconductors. The MR sensor element comes with two Wheatstone bridges for cosine and sine signals, supports functions for control circuit and signal amplification, and enables angular measurements with high accuracy by an excellent linearity and temperature drift behavior. The KMZ60 is fully automotive qualified as well as applicable for industrial and consumer applications.

mr_angle_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Apr 2021.
  • Type : SPI type

Software Support

We provide a library for the MrAngle Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for MrAngle Click driver.

Standard key functions :

  • mrangle_cfg_setup Config Object Initialization function.

    void mrangle_cfg_setup ( mrangle_cfg_t *cfg );
  • mrangle_init Initialization function.

    err_t mrangle_init ( mrangle_t *ctx, mrangle_cfg_t *cfg );
  • mrangle_default_cfg Click Default Configuration function.

    void mrangle_default_cfg ( mrangle_t *ctx );

Example key functions :

  • mrangle_get_angle MR Angle get angle function.

    err_t mrangle_get_angle ( mrangle_t *ctx, float *angle );
  • mrangle_get_temperature MR Angle get temperature function.

    err_t mrangle_get_temperature ( mrangle_t *ctx, float *temperature );
  • mrangle_powerdown_mode MR Angle powerdown mode function.

    void mrangle_powerdown_mode ( mrangle_t *ctx, mrangle_powerdown_mode_value_t pd_mode );

Example Description

This library contains API for the MR Angle Click driver. This demo application shows an example of angle measurement.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART. After driver initialization, the app performs default settings.


void application_init ( void ) 
{
    log_cfg_t log_cfg;          /**< Logger config object. */
    mrangle_cfg_t mrangle_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    mrangle_cfg_setup( &mrangle_cfg );
    MRANGLE_MAP_MIKROBUS( mrangle_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == mrangle_init( &mrangle, &mrangle_cfg ) ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    mrangle_default_cfg ( &mrangle );
    log_info( &logger, " Application Task " );
}

Application Task

This is an example that shows the use of an MR Angle Click board™. The application task consists of reading the angle measurements in degrees ( 0 - 180 ). Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    mrangle_get_angle( &mrangle, &angle );
    log_printf( &logger, " Angle: %.2f deg\r\n", angle );
    log_printf( &logger, "------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MrAngle

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

M-BUS RF 2 Click

0

M-BUS RF 2 Click is a compact add-on board designed for utility metering and various telemetry applications. This board features the Metis-I (2605041183000), an 868MHz radio module from Würth Elektronik. It integrates an MSP430 microcontroller and a CC1101 RF chip-set to ensure efficient data transmission. Key features include a frequency range of 868.3MHz to 869.525MHz, support for the Wireless M-BUS EN13757-4:2013 and Open Metering System (OMS) standards, and communication capabilities up to 700 meters in clear conditions.

[Learn More]

BLE 5 click

5

The BLE 5 Click is a Click board witch provide BT/BLE connectivity for any embedded application. BLE 5 click based on the PAN1760A, a module from Panasonic. The Click board with small Bluetooth Low Energy module for easy integration of Bluetooth Low Energy connectivity (BLE) into various electronic devices.

[Learn More]

BATT-MON 3 Click

0

BATT-MON 3 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the BQ35100, battery fuel gauge, and end-of-service monitor from Texas Instruments. The BQ35100 provides highly configurable fuel gauging for non-rechargeable (primary) lithium batteries without requiring a forced battery discharge. It uses patented TI gauging algorithms to support the option to replace an old battery with a new one seamlessly. It provides accurate results with ultra-low average power consumption, alongside an I2C interface through which the host can read the gathered data.

[Learn More]