TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42563 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 18 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 203 times

Not followed.

License: MIT license  

Stepper 18 Click is a compact add-on board that contains a microstepping stepper motor driver. This board features the DRV8426, a stepper motor driver for industrial and consumer applications from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 18 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 18 Click" changes.

Do you want to report abuse regarding "Stepper 18 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Stepper 18 Click

Stepper 18 Click is a compact add-on board that contains a microstepping stepper motor driver. This board features the DRV8426, a stepper motor driver for industrial and consumer applications from Texas Instruments.

stepper_18_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : May 2021.
  • Type : I2C type

Software Support

We provide a library for the Stepper18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper18 Click driver.

Standard key functions :

  • stepper18_cfg_setup Config Object Initialization function.

    void stepper18_cfg_setup ( stepper18_cfg_t *cfg );
  • stepper18_init Initialization function.

    STEPPER18_RETVAL stepper18_init ( stepper18_t *ctx, stepper18_cfg_t *cfg );
  • stepper18_default_cfg Click Default Configuration function.

    void stepper18_default_cfg ( stepper18_t *ctx );

Example key functions :

  • stepper18_set_out_voltage Set voltage reference.

    err_t stepper18_set_out_voltage ( stepper18_t *ctx, uint16_t voltage );
  • stepper18_set_dir Set direction.

    void stepper18_set_dir ( stepper18_t *ctx, uint8_t value );
  • stepper18_move_motor_angle Move motor in angle value.

    void stepper18_move_motor_angle ( stepper18_t *ctx, float degree, uint8_t step_res, uint8_t speed );

Example Description

This example showcases the device's ability to control the motor. It initializes the device for control and moves the motor in two directions in a variety of speeds for 360 degrees.

The demo application is composed of two sections :

Application Init

Initializes UART and I2C communication modules, and additional
pins for motor control, and set's default configuration


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper18_cfg_t stepper18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper18_cfg_setup( &stepper18_cfg );
    STEPPER18_MAP_MIKROBUS( stepper18_cfg, MIKROBUS_1 );
    err_t init_flag = stepper18_init( &stepper18, &stepper18_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    stepper18_default_cfg ( &stepper18 );
    log_info( &logger, " Application Task " );
    stepper18_set_dir( &stepper18, 0 );
}

Application Task

First it move motor clockwise for 360 degrees in medium speed. Then changes direction and moves motor for 180 degrees in slow speed, and additional 180 degrees in fast speed.


void application_task ( void ) 
{
    static uint8_t direction = 0;
    log_printf( &logger, "> Move 360deg in CW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 360, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_MEDIUM );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 500 );
    log_printf( &logger, "> Move 180deg in CCW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_SLOW );
    Delay_ms ( 1000 );
    log_printf( &logger, "> Move 180deg in CCW direcion.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_FAST );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

Step resolution is changed by the switches[ M0, M1 ] on device. Full step : M0=>0 , M1=>0; Half step : M0=>1 , M1=>0; Quarter step : M0=>0 , M1=>1; 1/8 step : M0=>1 , M1=>1; 1/16 step : M0=>Hi-Z , M1=>1; 1/32 step : M0=>0 , M1=>Hi-Z; 1/64 step : M0=>Hi-Z , M1=>0; 1/128 step : M0=>Hi-Z , M1=>Hi-Z; 1/256 step : M0=>1 , M1=>0;

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper18

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Vibro Motor 2 Click

0

Vibro Motor 2 Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as Z4FC1B1301781 as well as DMG3420U MOSFET to drive the ERM motor, since the MCU itself cannot provide enough power for the motor driving. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect

[Learn More]

3G SARA Click

0

3G SARA Click is a versatile cellular network communication solution, featuring the compact 3.75G UMTS/HSPA SARA U-201 modem from u-blox.

[Learn More]

Angle 2 Click

0

The MA700 sensor IC features quadrature encoded outputs so that it can directly replace similar mechanical devices. The advantages of a contactless quadrature encoder are many, therefore Angular 2 Click is equipped with a three-pin header, offering an easy access to these outputs.

[Learn More]