TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142152 times)
  2. FAT32 Library (75471 times)
  3. Network Ethernet Library (59584 times)
  4. USB Device Library (49598 times)
  5. Network WiFi Library (45371 times)
  6. FT800 Library (45080 times)
  7. GSM click (31488 times)
  8. mikroSDK (30592 times)
  9. microSD click (27907 times)
  10. PID Library (27643 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Methane Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 494 times

Not followed.

License: MIT license  

Methane Click carries an MQ-4 sensor for methane (CH4). The gas sensing layer on the sensor unit is made of tin dioxide (SnO2), which has lower conductivity in clean air.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Methane Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Methane Click" changes.

Do you want to report abuse regarding "Methane Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Methane Click

Methane Click carries an MQ-4 sensor for methane (CH4). The gas sensing layer on the sensor unit is made of tin dioxide (SnO2), which has lower conductivity in clean air.

methane_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : ADC type

Software Support

We provide a library for the Methane Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Methane Click driver.

Standard key functions :

  • methane_cfg_setup Config Object Initialization function.

    void methane_cfg_setup ( methane_cfg_t *cfg );
  • methane_init Initialization function.

    METHANE_RETVAL methane_init ( methane_t *ctx, methane_cfg_t *cfg );
  • methane_default_cfg Click Default Configuration function.

    void methane_default_cfg ( methane_t *ctx );

Example key functions :

  • methane_read_an_pin_value Methane read AN pin value function.

    err_t methane_read_an_pin_value ( methane_t *ctx, uint16_t *data_out );
  • methane_read_an_pin_voltage Methane read AN pin voltage level function.

    err_t methane_read_an_pin_voltage ( methane_t *ctx, float *data_out );

Example Description

The demo application shows the reading of the adc values given by the sensors.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    methane_cfg_t methane_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    methane_cfg_setup( &methane_cfg );
    METHANE_MAP_MIKROBUS( methane_cfg, MIKROBUS_1 );
    if ( methane_init( &methane, &methane_cfg ) == ADC_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the adc value and prints in two forms adc value and voltage.


void application_task ( void ) {
    uint16_t methane_an_value = 0;

    if ( methane_read_an_pin_value ( &methane, &methane_an_value ) != ADC_ERROR ) {
        log_printf( &logger, " ADC Value : %u\r\n", methane_an_value );
    }

    float methane_an_voltage = 0;

    if ( methane_read_an_pin_voltage ( &methane, &methane_an_voltage ) != ADC_ERROR ) {
        log_printf( &logger, " AN Voltage : %.3f[V]\r\n\n", methane_an_voltage );
    }

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Methane

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Temp-Hum 5 click

5

Temp-Hum 5 click is a temperature and humidity sensing click board, packed with features that allow simple integration into any design. It can measure a wide range of temperature and relative humidity values with high accuracy.

[Learn More]

V to Hz 3 Click

0

V to Hz 3 Click is a compact add-on board that converts an analog voltage input signal into a specific frequency pulse wave signal. This board features the AD7740, an ultrasmall synchronous voltage-to-frequency converter from Analog Devices. The AD7740 has a linear response, so applying a voltage from 3V up to 5V on its VIN terminal will generate the pulse with a frequency linearly proportional to the input voltage. It contains an integrated 2.5V bandgap reference defining the span of the VFC and can be overdriven using an external reference. The full-scale output frequency is synchronous with the input clock signal provided by the LTC6903 programmable oscillator, with a maximum input frequency of 1MHz. Based on the analog input value, the output frequency goes from 10% to 90% of the input frequency.

[Learn More]

Air Quality 8 Click

0

Air quality 8 Click is a compact add-on board containing a best-in-class air-quality sensing solution. This board features the ZMOD4510, a fully calibrated digital sensor solution that detects air quality in various indoor and outdoor applications from Renesas. The ZMOD4510 comes with selective ozone measurement capabilities, offering visibility into the air quality in users' environments for a personalized experience. This Click board™ is an I2C configurable and characterized by outstanding long-term stability and lifetime. Many additional features such as low power consumption, wide NO2 and O3 detection range, and high sensitivity make this Click board™ an excellent choice for detecting unhealthy conditions in outdoor air, such as personal air-quality monitor, HVAC, and other various air quality-related applications.

[Learn More]