TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141999 times)
  2. FAT32 Library (75238 times)
  3. Network Ethernet Library (59465 times)
  4. USB Device Library (49485 times)
  5. Network WiFi Library (45264 times)
  6. FT800 Library (44869 times)
  7. GSM click (31412 times)
  8. mikroSDK (30399 times)
  9. microSD click (27775 times)
  10. PID Library (27613 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 12 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 436 times

Not followed.

License: MIT license  

Brushless 12 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the L6235, DMOS fully integrated 3-phase motor driver with overcurrent protection from STMicroelectronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 12 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 12 Click" changes.

Do you want to report abuse regarding "Brushless 12 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Brushless 12 Click

Brushless 12 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the L6235, DMOS fully integrated 3-phase motor driver with overcurrent protection from STMicroelectronics.

brushless12_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : GPIO type

Software Support

We provide a library for the Brushless12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless12 Click driver.

Standard key functions :

  • brushless12_cfg_setup Config Object Initialization function.

    void brushless12_cfg_setup ( brushless12_cfg_t *cfg );
  • brushless12_init Initialization function.

    BRUSHLESS12_RETVAL brushless12_init ( brushless12_t *ctx, brushless12_cfg_t *cfg );
  • brushless12_default_cfg Click Default Configuration function.

    void brushless12_default_cfg ( brushless12_t *ctx );

Example key functions :

  • brushless12_set_brake This function sets the BRK pin to the desired state.

    void brushless12_set_brake ( brushless12_t *ctx, uint8_t state );
  • brushless12_set_direction This function sets the F/R pin to the desired state.

    void brushless12_set_direction ( brushless12_t *ctx, uint8_t state );
  • brushless12_set_enable This function sets the EN pin to the desired state.

    void brushless12_set_enable ( brushless12_t *ctx, uint8_t state );

Example Description

This example demonstrates the use of Brushless 12 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and sets the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    brushless12_cfg_t brushless12_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    brushless12_cfg_setup( &brushless12_cfg );
    BRUSHLESS12_MAP_MIKROBUS( brushless12_cfg, MIKROBUS_1 );

    if ( brushless12_init( &brushless12, &brushless12_cfg ) == DIGITAL_OUT_UNSUPPORTED_PIN ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    brushless12_default_cfg( &brushless12 );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in the forward direction for 5 seconds, then pulls brake for 2 seconds, and after that drives it in the reverse direction for 5 seconds, and pulls brake for 2 seconds. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    log_printf( &logger, "The motor turns forward! \r\n" );
    brushless12_set_direction ( &brushless12, BRUSHLESS12_DIR_FORWARD );
    brushless12_set_brake ( &brushless12, BRUSHLESS12_START );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Pull brake! \r\n" );
    brushless12_set_brake ( &brushless12, BRUSHLESS12_BRAKE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "The motor turns in reverse! \r\n" );
    brushless12_set_direction ( &brushless12, BRUSHLESS12_DIR_REVERSE );
    brushless12_set_brake ( &brushless12, BRUSHLESS12_START );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Pull brake! \r\n" );
    brushless12_set_brake ( &brushless12, BRUSHLESS12_BRAKE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

eINK Click

0

eINK Click is an adapter Click board™, used to interface a compatible eINK display with the host MCU.

[Learn More]

6DOF IMU 11 click

5

The 6DOF IMU 11 click is a Click board based on the KMX63, a 6 Degrees-of-Freedom inertial sensor system on a single, silicon chip, which is designed to strike a balance between current consumption and noise performance with excellent bias stability over temperature.

[Learn More]

IR Grid Click

0

IR Grid Click is a thermal imaging sensor. It has an array of 64 very sensitive factory calibrated IR elements (pixels), arranged in 4 rows of 16 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90621ESF-BAD IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

[Learn More]