We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.11
mikroSDK Library: 2.0.0.0
Category: Force
Downloaded: 114 times
Not followed.
License: MIT license
Force 4 Click is based on HSFPAR003A piezoresistive force sensor from Alpsalpine. This product is a force sensor using the effect of a piezoresistive bridge circuit formed on silicon diaphragm.
Do you want to subscribe in order to receive notifications regarding "Force 4 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Force 4 Click" changes.
Do you want to report abuse regarding "Force 4 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4538_force_4_click.zip [211.30KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Force 4 Click is based on HSFPAR003A piezoresistive force sensor from Alpsalpine. This product is a force sensor using the effect of a piezoresistive bridge circuit formed on silicon diaphragm.
We provide a library for the Force4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Force4 Click driver.
Config Object Initialization function.
void force4_cfg_setup ( force4_cfg_t *cfg );
Initialization function.
FORCE4_RETVAL force4_init ( force4_t ctx, force4_cfg_t cfg );
uint16_t force4_read_adc ( force4_t *ctx )
This example shows the use of Force 4 Click. It reads 12bit ADC value, using I2C communication, at the interval of one second. The result is represented on the UART terminal.
The demo application is composed of two sections :
Initializes the driver and logger, and makes an initial log.
void application_init ( void )
{
log_cfg_t log_cfg;
force4_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
Delay_ms ( 100 );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
force4_cfg_setup( &cfg );
FORCE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
force4_init( &force4, &cfg );
Delay_ms ( 100 );
}
It reads 12bit ADC value, using I2C communication, at the interval of one second. The result is represented on the UART terminal.
void application_task ( void )
{
adc_val = force4_read_adc( &force4 );
log_printf( &logger, "ADC value: %d\r\n", adc_val );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.