TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ATA6571 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: CAN

Downloaded: 183 times

Not followed.

License: MIT license  

ATA6571 Click is a compact add-on board that contains a transceiver designed for high-speed CAN applications. This board features the ATA6571, a standalone high-speed CAN FD transceiver that interfaces a CAN protocol controller and the physical two-wire CAN bus from Microchip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ATA6571 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ATA6571 Click" changes.

Do you want to report abuse regarding "ATA6571 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ATA6571 Click

ATA6571 Click is a compact add-on board that contains a transceiver designed for high-speed CAN applications. This board features the ATA6571, a standalone high-speed CAN FD transceiver that interfaces a CAN protocol controller and the physical two-wire CAN bus from Microchip.

ata6571_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : UART type

Software Support

We provide a library for the ATA6571 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ATA6571 Click driver.

Standard key functions :

  • ata6571_cfg_setup Config Object Initialization function.

    void ata6571_cfg_setup ( ata6571_cfg_t *cfg );
  • ata6571_init Initialization function.

    err_t ata6571_init ( ata6571_t *ctx, ata6571_cfg_t *cfg );

Example key functions :

  • ata6571_set_operating_mode This function sets the device operating mode by controlling the EN and NSTB pins.

    void ata6571_set_operating_mode ( ata6571_t *ctx, uint8_t op_mode );
  • ata6571_generic_write This function writes a desired number of data bytes by using UART serial interface.

    err_t ata6571_generic_write ( ata6571_t *ctx, char *data_buf, uint16_t len );
  • ata6571_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t ata6571_generic_read ( ata6571_t *ctx, char *data_buf, uint16_t max_len );

Example Description

This example reads and processes data from ATA6571 Clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and sets the device operating mode.


void application_init ( void )
{
    log_cfg_t log_cfg;          /**< Logger config object. */
    ata6571_cfg_t ata6571_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    ata6571_cfg_setup( &ata6571_cfg );
    ATA6571_MAP_MIKROBUS( ata6571_cfg, MIKROBUS_1 );
    err_t init_flag = ata6571_init( &ata6571, &ata6571_cfg );
    if ( UART_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 100 );

#ifdef DEMO_APP_RECEIVER
    log_printf( &logger, "---- RECEIVER MODE ----\r\n" );
#endif 
#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, "---- TRANSMITTER MODE ----\r\n" );
#endif 

    ata6571_set_operating_mode ( &ata6571, ATA6571_OPERATING_MODE_NORMAL );
    app_buf_len = 0;
    app_buf_cnt = 0;

    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

Depending on the selected demo application mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    ata6571_process();

    if ( app_buf_len > 0 ) 
    {
        Delay_ms ( 100 );
        ata6571_process();

        log_printf( &logger, "%s", app_buf );
        log_printf( &logger, "-------------------------------------\r\n" );
        ata6571_clear_app_buf(  );
    }
#endif  

#ifdef DEMO_APP_TRANSMITTER 
    ata6571_generic_write( &ata6571, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_printf( &logger, "---- The message has been sent ----\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ATA6571

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DHT22 2 Click

0

DHT22 2 Click is used for measuring the environmental temperature and relative humidity. It uses the AM2322 sensor, with very accurate thermal and humidity measuring capabilities. It can use either 1-Wire or I2C protocol to communicate with the integrated circuit.

[Learn More]

RTC 10 Click

0

RTC 10 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.

[Learn More]

Charger 6 Click

0

Charger 6 Click is a compact add-on board that represents a single-cell battery charger. This board features the BQ25601, an I2C controlled battery charger for high input voltage and narrow voltage DC power path management from Texas Instruments. This buck charger supports USB, and it’s optimized for USB voltage input. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time, and extends battery life during discharge. It also has a programmable current limiting, allowing it to use an external power supply rated up to 13.5V. This Click board™ is suitable as a Li-Ion and Li-polymer battery charger for portable devices and accessories, power tools, and more.

[Learn More]