TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136809 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55952 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41195 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ADC 13 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 162 times

Not followed.

License: MIT license  

ADC 13 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS1262, a 32-bit, high precision, 38-kSPS, analog-to-digital converter with programmable gain amplifier and voltage reference from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ADC 13 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ADC 13 click" changes.

Do you want to report abuse regarding "ADC 13 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


ADC 13 click

ADC 13 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS1262, a 32-bit, high precision, 38-kSPS, analog-to-digital converter with programmable gain amplifier and voltage reference from Texas Instruments.

adc_13_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the ADC13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ADC13 Click driver.

Standard key functions :

  • adc13_cfg_setup Config Object Initialization function.

    void adc13_cfg_setup ( adc13_cfg_t *cfg );
  • adc13_init Initialization function.

    err_t adc13_init ( adc13_t *ctx, adc13_cfg_t *cfg );
  • adc13_default_cfg Click Default Configuration function.

    err_t adc13_default_cfg ( adc13_t *ctx );

Example key functions :

  • adc13_measure_voltage This function starts ADC conversation, reads RAW ADC data then calculates the voltage using the input vref for calculations.

    err_t adc13_measure_voltage ( adc13_t *ctx, float vref, float *voltage );
  • adc13_measure_temperature This function measures the internal temperature in Celsius.

    err_t adc13_measure_temperature ( adc13_t *ctx, float *temperature );
  • adc13_set_input_channel This function sets the ADC input positive and negative channels.

    err_t adc13_set_input_channel ( adc13_t *ctx, uint8_t pos, uint8_t neg );

Example Description

This example demonstrates the use of ADC 13 click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;      /**< Logger config object. */
    adc13_cfg_t adc13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    adc13_cfg_setup( &adc13_cfg );
    ADC13_MAP_MIKROBUS( adc13_cfg, MIKROBUS_1 );
    err_t init_flag  = adc13_init( &adc13, &adc13_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    adc13_default_cfg ( &adc13 );
    log_info( &logger, " Application Task " );
}

Application Task

Reads the voltage between AIN0 and AIN1 channels, and the module internal temperature as well. All values are being displayed on the USB UART where you can track their changes.


void application_task ( void )
{
    float voltage = 0;
    float temperature = 0;

    adc13_measure_voltage ( &adc13, ADC13_VREF_INTERNAL, &voltage );
    log_printf( &logger, " Voltage: %.3f V\r\n", voltage );
    adc13_measure_temperature ( &adc13, &temperature );
    log_printf( &logger, " Temperature: %.2f C\r\n", temperature );
    log_printf( &logger, " ---------------------------\r\n" );

    Delay_ms ( 500 );
}

Note

An internal 2.5V reference is set by default. If you want, you can change it using the adc13_set_voltage_reference function.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ADC13

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AC Current click

0

AC Current click is a device that is able to measure the alternating current (AC) running through the conductor, using the so-called non-invasive current sensor. The non-invasive sensor works by utilizing the electromagnetic induction phenomenon, similar to a transformer. The primary coil does not exist though, the electromagnetic field is generated by the AC Current running through the cable which is measured. The core of the sensing probe is split, allowing it to clamp on the current conducting cable. Since the sensor does not influence the measurement circuitry in any way while being galvanically isolated at the same time, it is an ideal solution to measure current running through mains, or similar high voltage installations.

[Learn More]

RS485 6 click

0

RS485 6 Click offers a half-duplex RS-485 communication with integrated surge protection

[Learn More]

DIGI POT 4 click

5

DIGI POT 4 click is a digitally controlled dual potentiometer, with the resistance of 10 kΩ. It has a 10 bit resolution which allows for a very smooth linear wiper positioning through 1024 steps.

[Learn More]