TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (400 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (128 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140754 times)
  2. FAT32 Library (73343 times)
  3. Network Ethernet Library (58192 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43970 times)
  6. FT800 Library (43532 times)
  7. GSM click (30466 times)
  8. mikroSDK (29169 times)
  9. PID Library (27166 times)
  10. microSD click (26846 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LYRA 24P Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: BT/BLE

Downloaded: 54 times

Not followed.

License: MIT license  

LYRA 24P Click is a compact add-on board for high-performance wireless connectivity in IoT devices running on Bluetooth. This board features the LYRA 24P (453-00145R), a secure high-performance wireless module from Ezurio. It features a 32-bit ARM® Cortex®-M33 core at 39MHz, Bluetooth® Low Energy (BLE) 5.3 connectivity, and industry-leading Secure Vault® technology for enhanced security and future-proofing. The module supports 2.4GHz wireless connectivity with a built-in antenna and offers global regulatory certifications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LYRA 24P Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LYRA 24P Click" changes.

Do you want to report abuse regarding "LYRA 24P Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LYRA 24P Click

LYRA 24P Click is a compact add-on board for high-performance wireless connectivity in IoT devices running on Bluetooth. This board features the LYRA 24P (453-00145R), a secure high-performance wireless module from Ezurio. It features a 32-bit ARM® Cortex®-M33 core at 39MHz, Bluetooth® Low Energy (BLE) 5.3 connectivity, and industry-leading Secure Vault® technology for enhanced security and future-proofing. The module supports 2.4GHz wireless connectivity with a built-in antenna and offers global regulatory certifications.

lyra24p_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2023.
  • Type : UART type

Software Support

We provide a library for the LYRA 24P Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LYRA 24P Click driver.

Standard key functions :

  • lyra24p_cfg_setup Config Object Initialization function.

    void lyra24p_cfg_setup ( lyra24p_cfg_t *cfg );
  • lyra24p_init Initialization function.

    err_t lyra24p_init ( lyra24p_t *ctx, lyra24p_cfg_t *cfg );

Example key functions :

  • lyra24p_write_command This function writes a desired command by using UART serial interface.

    err_t lyra24p_write_command ( lyra24p_t *ctx, uint8_t *command );
  • lyra24p_write_cmd_param This function writes a desired command, command value, prefix and parameter by using UART serial interface.

    err_t lyra24p_write_cmd_param ( lyra24p_t *ctx, uint8_t *command, uint8_t *cmd_val, uint8_t *prefix, uint8_t *param );
  • lyra24p_inquire_command This function writes a desired inquire command, command value and enable/disable quote by using UART serial interface.

    err_t lyra24p_inquire_command ( lyra24p_t *ctx, uint8_t *command, uint8_t *cmd_val, uint8_t en_query );

Example Description

This example demonstrates the use of LYRA 24P Click board by processing the incoming data and displaying them on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs a factory reset. In the next step, the demo app requests the LYRA module name, software version, and MAC address and sets the local device name, sets the module into VSP mode and start advertising.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    lyra24p_cfg_t lyra24p_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    lyra24p_cfg_setup( &lyra24p_cfg );
    LYRA24P_MAP_MIKROBUS( lyra24p_cfg, MIKROBUS_1 );
    if ( UART_ERROR == lyra24p_init( &lyra24p, &lyra24p_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    lyra24p_hw_reset( &lyra24p );
    Delay_ms ( 500 );

    lyra24p_write_command( &lyra24p, LYRA24P_CMD_AT );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_write_command( &lyra24p, LYRA24P_CMD_AT );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_inquire_command( &lyra24p, LYRA24P_CMD_ATI, 
                                       LYRA24P_ATI_ARG_DEV_NAME, 
                                       LYRA24P_QUERY_DIS );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_inquire_command( &lyra24p, LYRA24P_CMD_ATI, 
                                       LYRA24P_ATI_ARG_FW_VER, 
                                       LYRA24P_QUERY_DIS );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_inquire_command( &lyra24p, LYRA24P_CMD_ATI, 
                                       LYRA24P_ATI_ARG_BT_ADDR, 
                                       LYRA24P_QUERY_DIS );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_write_cmd_param( &lyra24p, LYRA24P_CMD_ATS, 
                                       LYRA24P_ATS_ARG_DEVNAME_FORMAT, 
                                       LYRA24P_PREFIX_SYMBOL_SET_VAL, 
                                       LYRA24P_ATS_VAL_DEVNAME );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_set_device_name( &lyra24p, DEVICE_NAME );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_inquire_command( &lyra24p, LYRA24P_CMD_ATPS, 
                                       LYRA24P_PREFIX_SYMBOL_ZERO, 
                                       LYRA24P_QUERY_EN );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_write_command( &lyra24p, LYRA24P_CMD_ATLADV );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );

    lyra24p_write_command( &lyra24p, LYRA24P_CMD_ATLVSP );
    lyra24p_check_response( LYRA24P_RSP_OK );
    Delay_ms ( 500 );
}

Application Task

Initializes the driver and performs a factory reset. In the next step, the demo app are requesting the LYRA module name, software version and MAC address and sets the local device name "LYRA 24P Click",
sets the module into VSP mode and start adverttising.

void application_task ( void ) 
{
    if ( LYRA24P_OK == lyra24p_process( &lyra24p ) ) 
    {
        lyra24p_log_app_buf( );
        lyra24p_clear_app_buf( );
        Delay_ms ( 100 );
    }
}

Note

We have used the BLE Scanner smartphone application for the test.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LYRA24P

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LTE Cat.4 Click

0

LTE Cat.4 Click (for Europe) is a compact add-on board made specially for 4G M2M and IoT applications in Europe. This board features the EG95EXGA-128-SGNS, an IoT/M2M-optimized LTE Cat.4 module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones. Additionally, it offers a USB Type C connector for power and data transfer, AT command communication, and firmware upgrades.

[Learn More]

RN4870 click

5

RN4870 click carries the RN4870 Bluetooth® 4.2 low energy module from Microchip. The click is designed to run on a 3.3V power supply. It uses ASCII Command Interface over UART for communication with target microcontroller.

[Learn More]

DC Motor 8 Click

0

DC Motor 8 Click is a DC motor driver. It can drive simple DC motors with brushes, providing them with a significant amount of current and voltage up to 40V. The Click has one control input, that uses the PWM signal from the host MCU. It uses the half-bridge topology to regulate the speed of the motor rotation, employs advanced dead-time circuitry that monitors the output stage, providing maximum switching efficiency and features an advanced technique to avoid shoot-through currents.

[Learn More]