TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141803 times)
  2. FAT32 Library (74940 times)
  3. Network Ethernet Library (59303 times)
  4. USB Device Library (49298 times)
  5. Network WiFi Library (45094 times)
  6. FT800 Library (44656 times)
  7. GSM click (31275 times)
  8. mikroSDK (30205 times)
  9. microSD click (27654 times)
  10. PID Library (27561 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Button R Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Pushbutton/Switches

Downloaded: 378 times

Not followed.

License: MIT license  

Button R Click is the simplest solution for adding a single pushbutton to your design. The button itself is transparent, 6.8mm in diameter and has a red LED backlight. When pressed, it sends an interrupt signal to the target board microcontroller. The backlight LED is controlled separately through the mikroBUS PWM pin, so you can program all kinds of patterns (varying level of light intensity or rate of blinking on subsequent button presses). The board can use either a 3.3V or a 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Button R Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Button R Click" changes.

Do you want to report abuse regarding "Button R Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Button R Click

Button R Click is the simplest solution for adding a single pushbutton to your design. The button itself is transparent, 6.8mm in diameter and has a red LED backlight. When pressed, it sends an interrupt signal to the target board microcontroller. The backlight LED is controlled separately through the mikroBUS PWM pin, so you can program all kinds of patterns (varying level of light intensity or rate of blinking on subsequent button presses). The board can use either a 3.3V or a 5V power supply.

button_r_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the ButtonR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ButtonR Click driver.

Standard key functions :

  • buttonr_cfg_setup Config Object Initialization function.

    void buttonr_cfg_setup ( buttonr_cfg_t *cfg );
  • buttonr_init Initialization function.

    err_t buttonr_init ( buttonr_t *ctx, buttonr_cfg_t *cfg );

Example key functions :

  • buttonr_pwm_stop This function stops the PWM moudle output.

    err_t buttonr_pwm_stop ( buttonr_t *ctx );
  • buttonr_pwm_start This function starts the PWM moudle output.

    err_t buttonr_pwm_start ( buttonr_t *ctx );
  • buttonr_get_button_state This function reads the digital signal from the INT pin which tells us whether the button has been pressed or not.

    uint8_t buttonr_get_button_state ( buttonr_t *ctx );

Example Description

This library contains API for Button R Click driver. One library is used for every single one of them. They are simple touch detectors that send a pressed/released signal and receive a PWM output which controls the backlight on the button.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( void ) 
{
    log_cfg_t log_cfg;          /**< Logger config object. */
    buttonr_cfg_t buttonr_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    buttonr_cfg_setup( &buttonr_cfg );
    BUTTONR_MAP_MIKROBUS( buttonr_cfg, MIKROBUS_1 );
    err_t init_flag  = buttonr_init( &buttonr, &buttonr_cfg );
    if ( PWM_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 500 );

    buttonr_set_duty_cycle ( &buttonr, 0.0 );
    buttonr_pwm_start( &buttonr );

    log_info( &logger, " Application Task " );
}

Application Task

This example first increases the backlight on the button and then decreases the intensity of backlight. When the button is pressed, reports the event in the console using UART communication.


void application_task ( void ) 
{
    static float duty_cycle;
    static uint8_t button_state;
    static uint8_t button_state_old;

    button_state = buttonr_get_button_state( &buttonr );

    if ( button_state && ( button_state != button_state_old ) ) 
    {
        log_printf( &logger, " <-- Button pressed --> \r\n" );
        for ( uint8_t n_cnt = 1; n_cnt <= 100; n_cnt++  )
        {
            duty_cycle = ( float ) n_cnt ;
            duty_cycle /= 100;
            buttonr_set_duty_cycle( &buttonr, duty_cycle );
            Delay_ms ( 10 );
        }
        button_state_old = button_state;
    } 
    else if ( !button_state && ( button_state != button_state_old ) ) 
    {
        for ( uint8_t n_cnt = 100; n_cnt > 0; n_cnt-- )
        {
            duty_cycle = ( float ) n_cnt ;
            duty_cycle /= 100;
            buttonr_set_duty_cycle( &buttonr,  duty_cycle );
            Delay_ms ( 10 );
        }
        button_state_old = button_state;
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ButtonR

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

H-Bridge Driver 2 Click

0

H-Bridge Driver 2 Click is a compact add-on board that contains an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the NCV7535, a monolithic H−bridge pre-driver for a DC motor with an enhanced feature set, useful in automotive systems from ON Semiconductor. The gate driver channels are independently controlled by a 24-bit SPI interface, allowing this Click board™ to be optionally configured in a single or dual H-bridge mode. It has a wide operating voltage range from 6V to 18V with built-in protection features against short-circuit, under/over voltage, overcurrent, and overtemperature conditions. This Click board™ is suitable to drive external MOSFETs, thus providing control of a DC-motor.

[Learn More]

PROFET 10A Click

0

PROFET Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS7008-1EPA, a single-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies. This switch has a driving capability suitable for 10A loads featuring a ReverSave™, which causes the power transistor to switch on in case of reverse polarity.

[Learn More]

Buck 15 Click

0

Buck 15 Click is a compact add-on board for precision voltage regulation across various applications. This board features the TPS62903, a synchronous step-down DC/DC converter from Texas Instruments. It is known for its adaptability, rapid transient response, and high output voltage accuracy of ±1.5% across all operating temperatures. Featuring the innovative DCS-control topology, it supports a wide input voltage range of 3V to 17V, an adjustable output voltage from 0.4V to 5V, and currents up to 3A. This Click board™ can be used in a variety of automotive applications, such as the ADAS, body electronics and lighting, infotainment and cluster, hybrid, electric, and powertrain systems, any application with a 12V input voltage or a 1-4 cell lithium battery pack, and more.

[Learn More]