TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71748 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28076 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Force 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 154 times

Not followed.

License: MIT license  

Force 5 Click is a compact add-on board that contains a stable and flexible compensated/amplified micro force sensor. This board features the FMAMSDXX025WC2C3, a piezoresistive-based force sensors offering a digital output for reading force over the specified full-scale force span and a temperature range from Honeywell Sensing and Productivity Solutions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Force 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Force 5 Click" changes.

Do you want to report abuse regarding "Force 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Force 5 Click

Force 5 Click is a compact add-on board that contains a stable and flexible compensated/amplified micro force sensor. This board features the FMAMSDXX025WC2C3, a piezoresistive-based force sensors offering a digital output for reading force over the specified full-scale force span and a temperature range from Honeywell Sensing and Productivity Solutions.

force5_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the Force5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Force5 Click driver.

Standard key functions :

  • force5_cfg_setup Config Object Initialization function.

    void force5_cfg_setup ( force5_cfg_t *cfg );
  • force5_init Initialization function.

    err_t force5_init ( force5_t *ctx, force5_cfg_t *cfg );

Example key functions :

  • force5_calibration Calibration the sensor function.

    uint8_t force5_calibration ( force5_t *ctx, force5_calibration_t *calib_data );
  • force5_get_force Get force function.

    float force5_get_force ( force5_t *ctx, force5_calibration_t calib_data );
  • force5_get_temperature Get temperature function.

    float force5_get_temperature ( force5_t *ctx );

Example Description

This is an example that demonstrates the use of the Force 5 Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - I2C, calibration the device, display diagnostic states and temperature.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    force5_cfg_t force5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    force5_cfg_setup( &force5_cfg );
    FORCE5_MAP_MIKROBUS( force5_cfg, MIKROBUS_1 );
    err_t init_flag = force5_init( &force5, &force5_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "      Calibration... \r\n" );
    log_printf( &logger, "-------------------------\r\n" );

    status = force5_calibration( &force5, &calib_data );
    Delay_ms ( 100 );

    log_printf( &logger, "      Completed \r\n" );
    log_printf( &logger, "-------------------------\r\n" );

    log_printf( &logger, "      Diagnostic States: \r\n" );
    if ( status == FORCE5_STATES_NORMAL_OPERATION ) {
        log_printf( &logger, "    Normal Operation \r\n" );
    }
    if ( status == FORCE5_STATES_COMMAND_MODE ) {
        log_printf( &logger, "      Command Mode \r\n" );
    }
    if ( status == FORCE5_STATES_STALE_DATA ) {
        log_printf( &logger, "       Stale Data \r\n" );
    }
    if ( status == FORCE5_STATES_DIAGNOSTIC_CONDITION ) {
        log_printf( &logger, "   Diagnostic Condition \r\n" );
    }
    log_printf( &logger, "-------------------------\r\n" );

    temperature = force5_get_temperature( &force5 );
    Delay_ms ( 100 );

    log_printf( &logger, " Temperature : %.2f C \r\n", temperature );
    log_printf( &logger, "-------------------------\r\n" );

    log_info( &logger, " Application Task " );
}

Application Task

Force 5 Click board is measuring force ( N ). All data logs write on USB uart changes every 500 milliseconds.


void application_task ( void ) {
    force_n = force5_get_force( &force5, calib_data );
    log_printf( &logger, " Force : %.4f N \r\n", force_n );
    log_printf( &logger, "------------------\r\n" );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Force5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

M-Bus Slave Click

0

M-Bus Slave Click is a Click board™ equipped with the TSS721A, a single chip transceiver developed by Texas Instruments for Meter-Bus applications according to EN1434-3 standard. The connection to the bus is polarity independent and serves as a slave node in the system. M-Bus Slave Click has full galvanic isolation with optocouplers to improve the reliability of the whole circuit.

[Learn More]

GSM 2 click

7

GSM2 Click is a board in mikroBUSâ„¢ form factor which is a solution for adding GSM/GPRS communication layer to your device. It features Quectel M95 GSM/GPRS module which supports most GSM quad-band frequencies with 85.6 kbps GPRS data transfer.

[Learn More]

Clock Gen 4 Click

0

Clock Gen 4 Click is a compact add-on board that contains both a clock generator and a multiplier/jitter reduced clock frequency synthesizer. This board features the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic. This clocking device utilizes a programmable phase lock loop and allows frequency synthesis and clock generation from a stable reference clock. It generates a low-jitter PLL clock from an external crystal, supports both I²C and SPI for full software control, and also has configurable auxiliary clock output. This Click board™ is suitable for MCU clock source, or in applications like digital effects processors, digital mixing consoles, and many more.

[Learn More]