TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142123 times)
  2. FAT32 Library (75411 times)
  3. Network Ethernet Library (59568 times)
  4. USB Device Library (49556 times)
  5. Network WiFi Library (45362 times)
  6. FT800 Library (45000 times)
  7. GSM click (31486 times)
  8. mikroSDK (30568 times)
  9. microSD click (27902 times)
  10. PID Library (27637 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Compass 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 407 times

Not followed.

License: MIT license  

Compass 6 Click is a compact add-on board perfect for implementation in applications such as an electronic compass. This board features the HSCDTD008A, a high-sensitivity geomagnetic sensor from ALPS Alpine.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Compass 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Compass 6 Click" changes.

Do you want to report abuse regarding "Compass 6 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Compass 6 Click

Compass 6 Click is a compact add-on board perfect for implementation in applications such as an electronic compass. This board features the HSCDTD008A, a high-sensitivity geomagnetic sensor from ALPS Alpine.

compass_6_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Aug 2021.
  • Type : I2C type

Software Support

We provide a library for the Compass6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Compass6 Click driver.

Standard key functions :

  • compass6_cfg_setup Config Object Initialization function.

    void compass6_cfg_setup ( compass6_cfg_t *cfg );
  • compass6_init Initialization function.

    err_t compass6_init ( compass6_t *ctx, compass6_cfg_t *cfg );
  • compass6_default_cfg Click Default Configuration function.

    err_t compass6_default_cfg ( compass6_t *ctx );

Example key functions :

  • compass6_get_axes_data Magnetic axes data reading.

    err_t compass6_get_axes_data ( compass6_t *ctx, compass6_axes_t *axes_data );
  • compass6_data_ready Get data ready pin state.

    uint8_t compass6_data_ready ( compass6_t *ctx );
  • compass6_generic_read Reading function.

    err_t compass6_generic_read ( compass6_t *ctx, uint8_t reg, uint8_t *rx_data );

Example Description

This example is a showcase the ability of the device to read 3 axis data of magnetic raw value when data is ready.

The demo application is composed of two sections :

Application Init

Initialization of communication modules (I2C, UART) and data ready pin as input. Then reads identification data and checks if some of them have wrong value, and configures device for reading.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    compass6_cfg_t compass6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    compass6_cfg_setup( &compass6_cfg );
    COMPASS6_MAP_MIKROBUS( compass6_cfg, MIKROBUS_1 );
    err_t init_flag = compass6_init( &compass6, &compass6_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    uint8_t temp_data = 0;
    compass6_generic_read( &compass6, COMPASS6_REG_WHO_I_AM, &temp_data );
    log_printf( &logger, " > Who am I: 0x%.2X\r\n", ( uint16_t )temp_data );
    if ( COMPASS6_WHO_AM_I != temp_data )
    {
        log_error( &logger, " Who am I. " );
    }

    compass6_generic_read( &compass6, COMPASS6_REG_INFO_VERSION, &temp_data );
    log_printf( &logger, " > Version: 0x%.2X\r\n", ( uint16_t )temp_data );
    if ( COMPASS6_VERSION != temp_data )
    {
        log_error( &logger, " Version. " );
    }

    compass6_generic_read( &compass6, COMPASS6_REG_INFO_ALPS, &temp_data );
    log_printf( &logger, " > ALPS: 0x%.2X\r\n", ( uint16_t )temp_data );
    if ( COMPASS6_ALPS != temp_data )
    {
        log_error( &logger, " ALPS. " );
    }

    compass6_default_cfg ( &compass6 );

    log_info( &logger, " Application Task " );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Task

Checks Data ready pin and if asserted high it will read data of all 3 axes(x, y, z) and log data to Terminal.


void application_task ( void ) 
{
    if ( compass6_data_ready( &compass6 ) )
    {      
        compass6_axes_t axes_data;
        compass6_get_axes_data( &compass6, &axes_data );
        log_printf( &logger, " > X: %d\r\n", axes_data.x );
        log_printf( &logger, " > Y: %d\r\n", axes_data.y );
        log_printf( &logger, " > Z: %d\r\n", axes_data.z );
        log_printf( &logger, "*********************\r\n" );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Compass6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

V to Hz Click

0

V to HZ Click is a device that converts an analog voltage input signal into a pulse wave signal of a certain frequency. It has a linear response, so applying a voltage in a range of 0 to 5V on its input, will result in generating the pulse train with frequency linearly proportional to the input voltage.

[Learn More]

RTC 13 Click

0

RTC 13 Click is a compact add-on board that accurately keeps the time of a day. This board features the PCF2123, an SPI configurable real-time clock/calendar optimized for low power operations from NXP Semiconductors. The PCF2123 provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768kHz quartz crystal. Data is transferred serially via an SPI interface with a maximum data rate of 6.25 Mbit/s. An alarm and timer function is also available, providing the possibility to generate a wake-up signal on an interrupt line, in addition to a programmable square-wave clock output. This Click board™ is suitable for various time-keeping applications, including high-duration timers, metering, daily alarms, low standby power applications, and many more.

[Learn More]

GainAMP 2 Click

0

GainAMP 2 Click is a 6-channel programmable gain amplifier, used to amplify signals on any of the 6 non-inverting input channels up to 32x, in eight discrete steps.

[Learn More]