TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28442 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 177 times

Not followed.

License: MIT license  

EEPROM 5 Click is a compact add-on board that contains the highest-density memory solution. This board features the M95M04, the 4Mbit electrically erasable programmable memory organized as 524288 x 8 bits accessed through the SPI interface from STMicroelectronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 5 Click" changes.

Do you want to report abuse regarding "EEPROM 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EEPROM 5 Click

EEPROM 5 Click is a compact add-on board that contains the highest-density memory solution. This board features the M95M04, the 4Mbit electrically erasable programmable memory organized as 524288 x 8 bits accessed through the SPI interface from STMicroelectronics.

eeprom_5_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the EEPROM5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM5 Click driver.

Standard key functions :

  • eeprom5_cfg_setup Config Object Initialization function.

    void eeprom5_cfg_setup ( eeprom5_cfg_t *cfg );
  • eeprom5_init Initialization function.

    err_t eeprom5_init ( eeprom5_t *ctx, eeprom5_cfg_t *cfg );

Example key functions :

  • eeprom5_set_hold Enable hold operation function.

    void eeprom5_set_hold ( eeprom5_t *ctx, uint8_t en_hold );
  • eeprom5_read_memory Read EEPROM memory function.

    void eeprom5_read_memory ( eeprom5_t *ctx, uint32_t addr, uint8_t *p_rx_data, uint8_t n_bytes );
  • eeprom5_write_memory Write EEPROM memory function.

    void eeprom5_write_memory ( eeprom5_t *ctx, uint32_t addr, uint8_t *p_tx_data, uint8_t n_bytes );

Example Description

This is an example that demonstrates the use of the EEPROM 5 Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables SPI, also write log.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom5_cfg_t eeprom5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeprom5_cfg_setup( &eeprom5_cfg );
    EEPROM5_MAP_MIKROBUS( eeprom5_cfg, MIKROBUS_1 );
    err_t init_flag  = eeprom5_init( &eeprom5, &eeprom5_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
    log_printf( &logger, " Disabling HOLD \r\n" );
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
    eeprom5_set_hold( &eeprom5, EEPROM5_HOLD_DISABLE );
    Delay_ms ( 100 );
    log_printf( &logger, " Disabling Write Protection \r\n" );
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
    eeprom5_set_write_protect( &eeprom5, EEPROM5_WRITE_PROTECT_DISABLE );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
}

Application Task

In this example, we write and then read data from EEPROM memory. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes approximately for every 5 sec.


void application_task ( void ) 
{
    eeprom5_enable_memory_write( &eeprom5, EEPROM5_WRITE_MEMORY_ENABLE );
    Delay_ms ( 10 );

    eeprom5_write_memory( &eeprom5, 14, demo_data, 9 );
    log_printf( &logger, " Write data : %s ", demo_data );
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
    Delay_ms ( 100 );

    eeprom5_read_memory( &eeprom5, 14, read_data, 9 );
    log_printf( &logger, " Read data : %s ", read_data );
    log_printf( &logger, " - - - - - - - - - - - \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

CO2 Click

0

CO2 Click is a compact add-on board that contains Sensirion miniature CO2 sensor. This board features the STC31, a gas concentration sensor designed for high-volume applications. The STC31 utilizes a revolutionized thermal conductivity measurement principle, which results in superior repeatability and long-term stability. The outstanding performance of these sensors is based on Sensirion’s patented CMOSens® sensor technology, which combines the sensor element, signal processing, and digital calibration on a small CMOS chip. It features a digital I2C interface, which makes it easy to connect directly to MCU. This Click board™ represents an ideal choice for health, environmental, industrial, residential monitoring of high CO2 concentrations and applications where reliability is crucial.

[Learn More]

DIGI POT 3 click

5

DIGI POT 3 click is a versatile and feature-rich digital potentiometer click with 1024 steps and an internal non-volatile memory (EEMEM), which can be used for storing the wiper position, but also for storing various user data.

[Learn More]

nRF T click - Example

0

This is a sample program which demonstrates the use of nRF T click. Programmer uses RF module for communication between two development systems. Each module can be used as transmitter and receiver.

[Learn More]