TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42563 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 224 times

Not followed.

License: MIT license  

EEPROM 7 Click is a compact add-on board that contains the highest-density memory solution. This board feature the 25CSM04, a 4-Mbit SPI Serial EEPROM with a 128-bit serial number and enhanced write protection mode from Microchip. Internally organized as 2,048 pages of 256 bytes each, the 25CSM04 comes up with the compatible SPI serial interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 7 Click" changes.

Do you want to report abuse regarding "EEPROM 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EEPROM 7 Click

EEPROM 7 Click is a compact add-on board that contains the highest-density memory solution. This board feature the 25CSM04, a 4-Mbit SPI Serial EEPROM with a 128-bit serial number and enhanced write protection mode from Microchip. Internally organized as 2,048 pages of 256 bytes each, the 25CSM04 comes up with the compatible SPI serial interface.

eeprom7_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the EEPROM7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM7 Click driver.

Standard key functions :

  • eeprom7_cfg_setup Config Object Initialization function.

    void eeprom7_cfg_setup ( eeprom7_cfg_t *cfg );
  • eeprom7_init Initialization function.

    err_t eeprom7_init ( eeprom7_t *ctx, eeprom7_cfg_t *cfg );
  • eeprom7_default_cfg Click Default Configuration function.

    err_t eeprom7_default_cfg ( eeprom7_t *ctx );

Example key functions :

  • eeprom7_sw_reset Software device reset function.

    void eeprom7_sw_reset ( eeprom7_t *ctx );
  • eeprom7_write_memory Write EEPROM memory function.

    void eeprom7_write_memory ( eeprom7_t *ctx, uint32_t addr, uint8_t *p_tx_data, uint8_t n_bytes );
  • eeprom7_read_memory Read EEPROM memory function.

    void eeprom7_read_memory ( eeprom7_t *ctx, uint32_t addr, uint8_t *p_rx_data, uint8_t n_bytes);

Example Description

This is an example that demonstrates the use of the EEPROM 7 Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - SPI, also write log.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom7_cfg_t eeprom7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    eeprom7_cfg_setup( &eeprom7_cfg );
    EEPROM7_MAP_MIKROBUS( eeprom7_cfg, MIKROBUS_1 );
    err_t init_flag  = eeprom7_init( &eeprom7, &eeprom7_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    eeprom7_default_cfg ( &eeprom7 );
    log_info( &logger, " Application Task " );
}

Application Task

In this example, we write and then read data from EEPROM memory. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes approximately for every 3 sec.


void application_task ( void ) {
    eeprom7_send_cmd( &eeprom7, EEPROM7_OPCODE_STATUS_WREN );
    Delay_ms ( 100 );

    eeprom7_write_memory( &eeprom7, 0x00001234, &demo_data[ 0 ], 9 );
    Delay_ms ( 100 );

    log_printf( &logger, " > Write data: %s", demo_data );

    while ( eeprom7_is_device_ready( &eeprom7 ) == EEPROM7_DEVICE_IS_READY ) {
        check_status = eeprom7_send_cmd( &eeprom7, EEPROM7_OPCODE_STATUS_WRBP );
        Delay_ms ( 1 );
    }

    eeprom7_read_memory( &eeprom7, 0x00001234, &read_data[ 0 ], 9 );
    Delay_ms ( 100 );
    log_printf( &logger, " > Read data: %s", read_data );

    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Flicker click

0

FLICKER click is perfect, simple solution if you need to turn a device on and off at specific time intervals, like blinking LED commercials, alarm system lights, or any other signalling lights. This example shows how by using the button you can start time relay and configure it's duration of on and off period.

[Learn More]

DC Motor 12 Click

0

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]

SE051 Plug n Trust Click

0

SE051 Plug&Trust Click is a compact add-on board representing a ready-to-use IoT security solution. This board features the SE051C2, an updatable extension of the EdgeLock™ SE050 from NXP Semiconductor, which delivers proven security certified to CC EAL 6+, with AVA_VAN.5up to the OS level. Designed for the latest IoT security requirements, it allows securely storing and provisioning credentials performing cryptographic operations, giving edge-to-cloud security capability right out of the box. It also provides upgrade functionality of the IoT applet while preserving on-device credentials, alongside reconfiguration possibility.

[Learn More]