TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139274 times)
  2. FAT32 Library (71758 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47434 times)
  5. Network WiFi Library (43098 times)
  6. FT800 Library (42409 times)
  7. GSM click (29835 times)
  8. mikroSDK (28106 times)
  9. PID Library (26886 times)
  10. microSD click (26200 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

NFC 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: RFID/NFC

Downloaded: 273 times

Not followed.

License: MIT license  

NFC 2 Click is a compact add-on board that contains a highly integrated NFC transceiver for contactless communication. This board features the PN7150, the best plug&play high-performance full NFC solution with integrated firmware and NCI interface designed for contactless communication at 13.56 MHz from NXP USA Inc.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "NFC 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "NFC 2 Click" changes.

Do you want to report abuse regarding "NFC 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


NFC 2 Click

NFC 2 Click is a compact add-on board that contains a highly integrated NFC transceiver for contactless communication. This board features the PN7150, the best plug&play high-performance full NFC solution with integrated firmware and NCI interface designed for contactless communication at 13.56 MHz from NXP USA Inc.

nfc2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2021.
  • Type : I2C type

Software Support

We provide a library for the NFC2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for NFC2 Click driver.

Standard key functions :

  • nfc2_cfg_setup Config Object Initialization function.

    void nfc2_cfg_setup ( nfc2_cfg_t *cfg );
  • nfc2_init Initialization function.

    err_t nfc2_init ( nfc2_t *ctx, nfc2_cfg_t *cfg );
  • nfc2_default_cfg Click Default Configuration function.

    err_t nfc2_default_cfg ( nfc2_t *ctx );

Example key functions :

  • nfc2_hw_reset HW reset function.

    void nfc2_hw_reset( nfc2_t *ctx );
  • nfc2_core_set_protocol_config Set protocol configuration function.

    void nfc2_core_set_protocol_config ( nfc2_t *ctx );
  • nfc2_cmd_card_disconnected Card disconnected command function.

    void nfc2_cmd_card_disconnected ( nfc2_t *ctx );

Example Description

This is an example which demonstrates the usage of NFC 2 Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - I2C, hw reset, reseteting and initialize core, disabling standby mode, starting test procedure, set configuration and start discovery, also write log.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    nfc2_cfg_t nfc2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    nfc2_cfg_setup( &nfc2_cfg );
    NFC2_MAP_MIKROBUS( nfc2_cfg, MIKROBUS_1 );
    err_t init_flag = nfc2_init( &nfc2, &nfc2_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_printf( &logger, "        HW Reset       \r\n" );
    nfc2_hw_reset( &nfc2 );
    Delay_ms ( 100 );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, " Reset and Init. Core  \r\n" );
    nfc2_cmd_core_reset( &nfc2 );
    Delay_ms ( 100 );

    nfc2_read_ctrl_packet_data( &nfc2, &ctrl_pck_data );
    Delay_ms ( 100 );

    nfc2_cmd_core_init( &nfc2 );
    Delay_ms ( 100 );

    nfc2_read_ctrl_packet_data( &nfc2, &ctrl_pck_data );
    Delay_ms ( 100 );
    display_packet( &ctrl_pck_data );

    while ( nfc2_check_irq( &nfc2 ) == NFC2_IRQ_STATE_HIGH );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, " Disabling Standby Mode \r\n" );
    nfc2_cmd_disable_standby_mode( &nfc2 );
    Delay_ms ( 100 );

    nfc2_read_ctrl_packet_data( &nfc2, &ctrl_pck_data );
    Delay_ms ( 100 );
    display_packet( &ctrl_pck_data );

    nfc2_test_antenna( &nfc2, &ctrl_pck_data );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "Starting Test Procedure\r\n" );
    nfc2_cmd_test_procedure( &nfc2 );
    Delay_ms ( 100 );

    nfc2_read_ctrl_packet_data( &nfc2, &ctrl_pck_data );
    Delay_ms ( 100 );
    display_packet( &ctrl_pck_data );

    nfc2_hw_reset( &nfc2 );
    Delay_ms ( 100 );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "       NFC Config.     \r\n" );
    nfc2_default_cfg ( &nfc2, &ctrl_pck_data );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "     Discovery Start   \r\n" );
    nfc2_cmd_start_discovery( &nfc2 );
    Delay_ms ( 100 );

    nfc2_read_ctrl_packet_data( &nfc2, &ctrl_pck_data );
    Delay_ms ( 100 );
    display_packet( &ctrl_pck_data );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "-------- START --------\r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms ( 500 );

    log_info( &logger, " Application Task " );
}

Application Task

NFC 2 Click board can be used for detection of RFiD tag and displays it's value via USART terminal. All data logs write on USB uart changes for every 1 sec.


void application_task ( void ) {
    while ( nfc2_check_irq( &nfc2 ) == NFC2_IRQ_STATE_HIGH ) {
        nfc2_read_nfc_data ( &nfc2, &ctrl_pck_data );
    }

    while ( nfc2_check_irq( &nfc2 ) == NFC2_IRQ_STATE_LOW );

    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NFC2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

H-Bridge Click

0

H-Bridge Click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge Click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

[Learn More]

Brushless 10 Click

0

Brushless 10 Click is a compact add-on board that provides precise control over brushless DC motors. This board features the TC78B016FTG, a 3-phase sine-wave PWM driver from Toshiba Semiconductor. The TC78B016FTG features Intelligent Phase Control (InPAC) for automatic motor phase adjustment, eliminating manual calibration, supporting an external power supply from 6V to 30V, and adjusting current output up to 3A. It also includes various control and diagnostic features such as rotational speed output, brake function, speed command, and safety detections with visual indicators. The onboard DAC also offers additional tunability for motor control enhancements like lead angle control, output duty cycle, motor lockout, and PWM frequency selection.

[Learn More]

Bargraph 2 Click

0

BarGraph 2 Click is a 10-segment bar graph display Click, which uses a high-quality, multicolor bar graph LED display. The bar graph display is a very popular device for displaying various properties, whether it be an audio level, current/voltage level, position of the encoder, and generally any property that can be displayed in a form of a bar graph.

[Learn More]