TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47739 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Waveform 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Clock generator

Downloaded: 273 times

Not followed.

License: MIT license  

Waveform 2 Click is a compact add-on board that contains a direct digital synthesis device for waveform generator applications. This board features the AD9834, a 75 MHz low power DDS device capable of producing high-performance sine/triangle/square outputs from Analog Devices. It provides the capability for phase and frequency modulation and has an on-board comparator that allows the production of a square wave signal for clock generation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Waveform 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Waveform 2 Click" changes.

Do you want to report abuse regarding "Waveform 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Waveform 2 Click

Waveform 2 Click is a compact add-on board that contains a direct digital synthesis device for waveform generator applications. This board features the AD9834, a 75 MHz low power DDS device capable of producing high-performance sine/triangle/square outputs from Analog Devices. It provides the capability for phase and frequency modulation and has an on-board comparator that allows the production of a square wave signal for clock generation.

waveform2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2021.
  • Type : I2C/SPI type

Software Support

We provide a library for the Waveform2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Waveform2 Click driver.

Standard key functions :

  • waveform2_cfg_setup Config Object Initialization function.

    void waveform2_cfg_setup ( waveform2_cfg_t *cfg );
  • waveform2_init Initialization function.

    err_t waveform2_init ( waveform2_t *ctx, waveform2_cfg_t *cfg );
  • waveform2_default_cfg Click Default Configuration function.

    err_t waveform2_default_cfg ( waveform2_t *ctx );

Example key functions :

  • waveform2_eeprom_read_string Waveform 2 read string function.

    void waveform2_eeprom_read_string ( waveform2_t *ctx, uint16_t addr, uint8_t *data_buf, uint16_t len );
  • waveform2_eeprom_write_string Waveform 2 write string function.

    void waveform2_eeprom_write_string ( waveform2_t *ctx, uint16_t addr, uint8_t *data_buf, uint16_t len );
  • waveform2_sine_output Waveform 2 set sine output function.

    void waveform2_sine_output ( waveform2_t *ctx );

Example Description

This is an example that demonstrates the use of the Waveform 2 Click board.

The demo application is composed of two sections :

Application Init

Initialize the communication interface, preforming hardware reset, and configure the Click board.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    waveform2_cfg_t waveform2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    waveform2_cfg_setup( &waveform2_cfg );
    WAVEFORM2_MAP_MIKROBUS( waveform2_cfg, MIKROBUS_1 );
    err_t init_flag  = waveform2_init( &waveform2, &waveform2_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    waveform2_default_cfg ( &waveform2 );

    log_printf( &logger, "---- EEPROM test ----\r\n " );
    log_printf( &logger, ">> Write [MikroE] to address 0x0123\r\n " );
    waveform2_eeprom_write_string( &waveform2, 0x0123, demo_tx_buf, 6 );
    waveform2_eeprom_read_string ( &waveform2, 0x0123, demo_rx_buf, 6 );
    log_printf( &logger, ">> Read data: %s  from address 0x0123.... \r\n ", demo_rx_buf );
    Delay_ms ( 1000 );
    waveform2_hw_reset( &waveform2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "---- Waveform set freqency ----\r\n" );
    int32_t freqency;
    freqency = aprox_freq_calculation( value );
    waveform2_set_freq( &waveform2, freqency );
    waveform2_triangle_output( &waveform2 );
    Delay_ms ( 1000 );
    log_info( &logger, " Application Task " );
}

Application Task

Predefined characters are inputed from the serial port. Depending on the character sent the signal frequency, waveform or amplitude will be changed.


void application_task ( void ) {
    char rx_data;
    uint32_t freq_data;

    if ( log_read( &logger, &rx_data, 1 ) ) {
        switch ( rx_data ) {
            case '+': {
                if ( value > 200000 ) {
                    value = 0;
                }
                value += 100000;
                freq_data = aprox_freq_calculation( value );
                waveform2_set_freq( &waveform2, freq_data );
                log_printf( &logger, ">> Increasing the frequency \r\n " );
                break;
            }

            case '-': {
                if ( value < 200000 ) {
                    value = 400000;
                }
                value -= 100000;
                freq_data = aprox_freq_calculation( value );
                waveform2_set_freq( &waveform2, freq_data );
                log_printf( &logger, ">> Decreasing the frequency \r\n " );
                break;
            }

            case 't': {
                waveform2_triangle_output( &waveform2 );
                log_printf( &logger, ">> Triangle output \r\n " );
                break;
            }

            case 's': {
                waveform2_sine_output( &waveform2 );
                log_printf( &logger,  ">> Sinusoid output \r\n " );
                break;
            }
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Waveform2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DAC 16 Click

0

DAC 16 Click is a compact add-on board, a digital-to-analog converter (DAC) designed for precise voltage and current output applications. This board features the DAC63204-Q1, an automotive-qualified 12-bit DAC from Texas Instruments. This Click board™ features four output channels with flexible configuration options, including adjustable voltage gains and selectable current ranges from ±25μA to ±250μA. It also supports both internal and external voltage references and offers a Hi-Z power-down mode for enhanced protection. Communication with the host MCU is enabled through either a 4-wire SPI or I2C interface, with configurable I2C addresses and a general-purpose I/O pin for additional functionality.

[Learn More]

USB UART 4 click

5

USB UART 4 click features well-known FT232RL USB-to-UART interface module from FDTI. It provides USB to asynchronous serial data transfer interface, allowing the microcontroller based designs to communicate with the personal computer, in a very simple way.

[Learn More]

PWR Meter 2 click

5

PWR Meter 2 click is a compact and accurate power monitoring Click board, capable of measuring and monitoring voltage up to 24V and current up to 5A.

[Learn More]