TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (130 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140874 times)
  2. FAT32 Library (73468 times)
  3. Network Ethernet Library (58268 times)
  4. USB Device Library (48456 times)
  5. Network WiFi Library (44062 times)
  6. FT800 Library (43629 times)
  7. GSM click (30520 times)
  8. mikroSDK (29224 times)
  9. PID Library (27194 times)
  10. microSD click (26887 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Current 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Current sensor

Downloaded: 168 times

Not followed.

License: MIT license  

Current 5 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA381, a high-speed current-sense amplifier with an integrated comparator from Texas Instruments. This device has selectable operating modes (transparent or latched) and detects overcurrent conditions by measuring the voltage developed across a current shunt resistor. Then it compares that voltage to a user-defined threshold limit set by the comparator reference potentiometer. The current-shunt monitor can measure differential voltage signals on common-mode voltages that vary from –0.2V to 26V, independent of the supply voltage. This Click board™ delivers higher performance to applications such as test and measurement, load and power supplies monitoring, low-side phase motor control, and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Current 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Current 5 Click" changes.

Do you want to report abuse regarding "Current 5 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Current 5 Click

Current 5 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA381, a high-speed current-sense amplifier with an integrated comparator from Texas Instruments. This device has selectable operating modes (transparent or latched) and detects overcurrent conditions by measuring the voltage developed across a current shunt resistor. Then it compares that voltage to a user-defined threshold limit set by the comparator reference potentiometer. The current-shunt monitor can measure differential voltage signals on common-mode voltages that vary from –0.2V to 26V, independent of the supply voltage. This Click board™ delivers higher performance to applications such as test and measurement, load and power supplies monitoring, low-side phase motor control, and many more.

current5_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the Current5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Current5 Click driver.

Standard key functions :

  • current5_cfg_setup Config Object Initialization function.

    void current5_cfg_setup ( current5_cfg_t *cfg );
  • current5_init Initialization function.

    err_t current5_init ( current5_t *ctx, current5_cfg_t *cfg );

Example key functions :

  • current5_get_current Get current.

    err_t current5_get_current ( current5_t *ctx, float *current )
  • current5_get_adc Read raw adc value.

    err_t current5_get_adc ( current5_t *ctx, uint16_t *adc_data )
  • current5_get_alert Get alert pin state.

    uint8_t current5_get_alert ( current5_t *ctx )

Example Description

This example application showcases ability of the device to read raw adc data and calculate the current from it.

The demo application is composed of two sections :

Application Init

Initialization of communication modules(SPI, UART) and additional pins for controlling device(RST, ALERT->INT).


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    current5_cfg_t current5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    current5_cfg_setup( &current5_cfg );
    CURRENT5_MAP_MIKROBUS( current5_cfg, MIKROBUS_1 );
    err_t init_flag  = current5_init( &current5, &current5_cfg );
    if ( SPI_MASTER_ERROR == init_flag )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Read ADC data with SPI communication and calculate input current.


void application_task ( void )
{
    float current = 0;
    current5_get_current( &current5, &current );
    log_printf( &logger, " > Current[ A ]: %.2f\r\n", current );
    log_printf( &logger, "*************************************************\r\n" );
    Delay_ms ( 300 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Current5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MAGNETO 4 Click

0

Magneto 4 Click is a high-resolution magnetic encoder Click board™ which allows contactless motion sensing down to 0.5µm.

[Learn More]

XBEE 3 Click

0

Xbee 3 Click is a compact add-on board suitable for mission-critical wireless applications. This board features the XB8X-DMUS-001, a low-power CE/RED certified Digi Xbee® RF module delivering superior performance and interference immunity from Digi International. The module can run either a proprietary DigiMesh® or point-to-multipoint networking protocol utilizing a low-power Silicon Labs MCU and an ADF7023 transceiver, along with an integrated SAW filter that offers industry-leading interference blocking. Operating between 863MHz and 870MHz (868MHz), it allows use in several regions, including approved European countries.

[Learn More]

Perfect Envirenment - Demo project

0

Turtle Terrarium is the ideal housing for aquatic turtles and other marine reptiles, amphibians, and invertebrates. This application is using several sensors which show their values on TFT Capacitive Board, refreshed every few seconds.

[Learn More]