TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47955 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28669 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Watchdog Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 165 times

Not followed.

License: MIT license  

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Watchdog Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Watchdog Click" changes.

Do you want to report abuse regarding "Watchdog Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Watchdog Click

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

watchdog_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2021.
  • Type : GPIO type

Software Support

We provide a library for the Watchdog Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Watchdog Click driver.

Standard key functions :

  • watchdog_cfg_setup Config Object Initialization function.

    void watchdog_cfg_setup ( watchdog_cfg_t *cfg );
  • watchdog_init Initialization function.

    err_t watchdog_init ( watchdog_t *ctx, watchdog_cfg_t *cfg );
  • watchdog_default_cfg Click Default Configuration function.

    err_t watchdog_default_cfg ( watchdog_t *ctx );

Example key functions :

  • watchdog_set_set0 Set S0 ( RST ) pin state function.

    void watchdog_set_set0 ( watchdog_t *ctx, uint8_t set0_state );
  • watchdog_get_wdo Get WDO ( INT ) pin state function.

    uint8_t watchdog_get_wdo ( watchdog_t *ctx );
  • watchdog_send_pulse Send pulse function.

    void watchdog_send_pulse ( watchdog_t *ctx, uint16_t p_duration_ms );

Example Description

This is an example that demonstrates the use of the Watchdog Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - GPIO, configure the watchdog window, enable watchdog, also write log.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    watchdog_cfg_t watchdog_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    watchdog_cfg_setup( &watchdog_cfg );
    WATCHDOG_MAP_MIKROBUS( watchdog_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == watchdog_init( &watchdog, &watchdog_cfg ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    watchdog_default_cfg ( &watchdog );

    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "   Configure of the  \r\n" );
    log_printf( &logger, "   watchdog window   \r\n" );
    watchdog_setup_time( &watchdog, WATCHDOG_SETUP_TIME_MODE_2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "   Watchdog enabled  \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );

    log_info( &logger, " Application Task " );
}

Application Task

In the first part of the example, we send pulses in a valid time window (Correct Operation). The second part of the example sends pulses outside the valid time window and then the watchdog detects a fault condition, display "Fault", performs the reset and turn on the LED ( WDT FLT ) on the Watchdog Click board. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    log_printf( &logger, "  Correct Operation  \r\n" );
    uint8_t n_cnt = 40;
    while ( n_cnt > 0 ) {
        watchdog_send_pulse( &watchdog, 1 );
        Delay_ms ( 50 );
        n_cnt--;
    }
    log_printf( &logger, "---------------------\r\n" );

    log_printf( &logger, "        Fault        \r\n" );
    n_cnt = 8;
    while ( n_cnt > 0 ) {
        watchdog_send_pulse( &watchdog, 1 );
        Delay_ms ( 250 );
        n_cnt--;
    }
    log_printf( &logger, "---------------------\r\n" );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Watchdog

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Magnetic Rotary 5 Click

0

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

[Learn More]

RTC 19 Click

0

RTC 19 Click is a compact add-on board that measures the passage of real-time. This board features the MAX31334, an I2C-configurable real-time clock with an integrated power switch from Analog Devices. The MAX31334 provides information like seconds, minutes, hours, days, months, years, and dates based on a 32.768kHz quartz crystal through an I2C serial interface to transmit time and calendar data to the MCU. It also has an alarm function that outputs an interrupt signal to the MCU when the day of the week, hour, or minute matches with the pre-set time, as well as a programmable square-wave output, event detection input with timestamping, and backup supply.

[Learn More]

USB UART 3 click

5

USB UART 3 click is a versatile and feature-rich USB to UART interface from Silicon Labs. It uses CP2102N which is a part of their USBXpress family. These devices are designed to quickly add a USB 2.0 full-speed compliant UART interface for custom applications.

[Learn More]